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1. Introduction

Suppose G is a complex connected reductive algebraic group and let θ denote an involutive auto-
morphism of G. Write K for the fixed points of θ, and P for a variety of parabolic subalgebras of a
fixed type in g, the Lie algebra of G. Then K acts with finitely many orbits on P , and these orbits
may be parametrized in a number of ways (e.g. [M], [RS], [BH]). For orientation, if G is a product
G1 × G1, θ interchanges the two factors, and P = B consists of (pairs of) Borel subalgebras, then
K ≃ G1 orbits on B (for the diagonal action) are parametrized by the Weyl group of G1 according
to the usual Bruhat decomposition.

In Section 2, we use the geometry of the moment map for the cotangent bundle T ∗P to give
another parametrization of the set K\P of K orbits on P . In more detail, let k denote the Lie
algebra of K, write N θ for the cone of nilpotent elements in (g/k)∗, and let N θ

P denote the cone of
nilpotent elements in

(G · (g/p◦)
∗) ∩ (g/k)∗

where p◦ denotes a fixed base-point in P . (Here and elsewhere we implicitly invoke the inclusion of
(g/p◦)

∗ and (g/k)∗ into g∗ and take the intersection there.) The moment map µP from T ∗P to g∗

maps a point (p, ξ) in T ∗P with

(1.1) ξ ∈ T ∗
p P ≃ (g/p)∗

simply to ξ. Consider now the conormal variety for K orbits on P ,

T ∗
KP =

⋃

Q∈K\P

T ∗
QP ,

where T ∗
QP denotes the conormal bundle to the K orbit Q. (In the special case G = G1 × G1

and P = B mentioned above, the conormal variety is the usual Steinberg variety of triples; see, for
instance, the exposition of [DR].) In general we may identify

(1.2) T ∗
QP = {(p, ξ) | p ∈ Q, ξ ∈ (g/(k + p))∗},

and hence the image of T ∗
KP under µP is simply N θ

P . Since µP is G-equivariant, a short argument
shows that the image of a particular conormal bundle T ∗

QP contains a unique dense orbit of K on

N θ
P . Hence we obtain a map

(1.3) Φ = ΦP : K\P −→ K\N θ
P ,

the latter set being finite by the results of Kostant-Rallis [KR]. Proposition 2.10 below parametrizes
the fibers of Φ in terms of certain isotypic components of Springer’s Weyl group representations using
the partial resolutions of Borho-MacPherson [BM]. This gives the parametrization of K\P alluded
to above (Corollary 2.12).

One is naturally led to ask if the parametrization can be effectively computed. For instance, are the
fibers Φ−1(OK) of the map in (1.3) computable in general? In Section 3, we restrict to a seemingly
very special case, requiring µP to be birational and OK to be as large as possible (“regular” in the
terminology of title; see Definition 3.1). In Proposition 3.7 and Remark 3.10 we give an effective
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algorithm to compute the fibers Φ−1(OK). Perhaps surprisingly this algorithm relies on the Kazhdan-
Lusztig-Vogan algorithm [V1] for computing the intersection homology groups (with coefficients) of
K orbit closures on the full flag variety.

The setting of Section 3 may appear too restrictive to be of much practical value. But in Section
4 we recall that it is exactly the geometric setting of the Adams-Barbasch-Vogan definition of Arthur
packets. (We follow [ABV, Chapter 27], but our exposition is essentially self-contained.) More
precisely, since the ground field is C, θ arises as the complexification of a Cartan involution for a
real form GR of G. We show that the algorithm of Remark 3.10 gives an effective means to compute
a distinguished constituent of each Arthur packet of integral special unipotent representations for
GR. According to the Arthur conjectures, these representations should be unitary. This is a striking
prediction (which is still open in general), since the constructions leading to their definition have
nothing to do with unitarity.

Finally, in Section 5, we consider a number of examples illustrating some subtleties of the parametriza-
tion of Section 2.

Acknowledgements. KN and PT would like to thank the Hausdorff Research Institute for Mathe-
matics for its hospitality during their stay in 2007. They would also like to thank the organizers of the
joint MPI-HIM program devoted to representation theory, complex analysis and integral geometry.
KN is partially supported by JSPS Grant-in-Aid for Scientific Research (B) #17340037. PT was
supported by NSA grant MSPF-06Y-096 and NSF grant DMS-0532393.

2. parametrizing K\P

The main result of this section is Corollary 2.12 which gives a parametrization of the K orbits
on P . As Propositions 2.8 and 2.13 show, the parametrization is closely related to Springer’s Weyl
group representations.

We begin with a discussion of the set K\B of K orbits on B. Basic references for this material are
[M] or [RS]. The set K\B is partially ordered by the inclusion of orbit closures. It is generated by
closure relations in codimension one. We will need to distinguish two kinds of such relations. To do
so, we fix a base-point b◦ ∈ B, a decomposition b◦ = h◦ ⊕ n◦, and let ∆+ denote the corresponding
set of positive roots. For a simple root α, let Pα denote the set of parabolic subalgebras of type α,
and write πα for the projection B → Pα.

Fix K orbits Q and Q′ on B. If K is connected, then Q is irreducible, and hence so is π−1
α (πα(Q)).

Thus π−1
α (πα(Q)) contains a unique dense K orbit. In general, K need not be connected and Q need

not be irreducible. But it is easy to see that the similar reasoning applies to conclude π−1
α (πα(Q))

always contains a dense K orbit. We write Q
α
→ Q′ if

dim(Q′) = dim(Q) + 1

and

Q′ is dense in π−1
α (πα(Q)).

This implies that Q is codimension one in the closure of Q′. The relations Q < Q′ for Q
α
→ Q′ do not

generate the closure order however. Instead we must also consider a kind of saturation condition.
More precisely, whenever a codimension one subdiagram of the form

(2.1) Q1

Q2

α =={{{{
Q3

Q4

aaCCCC
α

=={{{{
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is encountered, we complete it to

(2.2) Q1

Q2

α =={{{{
Q3

aa

Q4

aaCCCC
α

=={{{{

New edges added in this way are dashed in the diagrams below. Note that this operation must be
applied recursively, and thus some of the edges in the original diagram (2.1) may be dashed as the
recursion unfolds. Following the terminology of [RS, 5.1], we call the partially ordered set determined
by the solid edges the weak closure order.

Now fix a variety of parabolic subalgebras P of an arbitrary fixed type and write πP for the
projection from B to P . For definiteness fix p◦ = l◦ ⊕ u◦ ∈ P containing b◦. Then K\P may be
parametrized from a knowledge of the weak closure onK\B as follows. Consider the relationQ ∼P Q′

if πP(Q) = πP(Q′); this is generated by the relations Q ∼ Q′ if Q
α
→ Q′ for α simple in ∆(h◦, l◦).

Equivalence classes in K\B clearly are in bijection with K\P . (See also the parametrization of [BH,
Section 1], especially Proposition 4.) Fix an equivalence class C and fix a representative Q ∈ C. The
same reasoning that shows that π−1

α (πα(Q)) contains a unique dense K orbit also shows that

π−1
P (πP(Q))

contains a unique dense K orbit QC ∈ K\B. In other words, QC is the unique largest dimensional
orbit among the elements in C. In fact QC is characterized among the elements of C by the condition

(2.3) dimπ−1
α (πα(QC)) = dim(QC)

for all α simple in ∆(h◦, l◦). It follows that the full closure order on K\P is simply the restriction
of the full closure on K\B to the subset of all maximal-dimensional representatives of the form QC .
By restricting only the weak closure order, we may speak of the weak closure order on K\P .

Here are some elementary properties of the map ΦP introduced in (1.3) above.

Proposition 2.4. (1) Fix Q ∈ K\P and suppose Q′ ∈ K\B is dense in π−1
P (Q). Then

ΦB(Q′) = ΦP(Q).

(2) The map ΦP is order reversing from the weak closure order in K\P to the closure order on
K\N θ

P ; that is, if Q < Q′ in the weak closure order on K\P, then

ΦP(Q) ⊃ ΦP(Q′).

Proof. Part (1) is clear from the definitions. Part (2) reduces to the assertion for Q
α
→ Q′. In that

case, it amounts to a rank one calculation where it is obvious. ˜

Example 2.5. Proposition 2.4(2) fails for the full closure order on K\P . The first example which
exhibits this failure is GR = Sp(4,R) and P = B. Let α denote the short simple root in ∆+ and β
the long one. The closure order for K\B is as follows. Orbits on the same row of the diagram below
all have the same dimension. (The bottom row consists of orbits of dimension one, the next row
consists of orbits of dimension two, and so on.) Dashed lines represent relations in the full closure
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order which are not in the weak order.

(2.6) Q

R+

β

::vvvvvvvvvv
S

α

OO

R−

β

ddIIIIIIIIII

T+

α

OO

::

S′

β

OO

dd ::

T−

α

OO

dd

T ′
+

β

DD˘̆
˘̆

˘̆

U+

β

[[6666666 α

DD˙̇
˙̇

˙̇
˙

U−

α

ZZ4444444
β

CC˘̆
˘̆

˘̆
˘

T ′
−

β

ZZ666666

Adopt the parametrization of K\N θ given in [CM, Theorem 9.3.5] in terms of signed tableau. Let
(i1)

j1
ǫ1

(i2)
j2
ǫ2
· · · denote the tableau with jk rows of length ik beginning with sign ǫk for each k. Then

the closure order on K\N θ is given by

(2.7) 41
+

@@

´́
´́

´́
´ ‘‘

AA
AA

AA
AA

41
−

>>

}}
}}

}}
}}

^^

==
==

==
=

22
+

^^

==
==

==
=

21
+21

−
>>

}}
}}

}}
}}

‘‘

AA
AA

AA
AA

22
−

@@

´́
´́

´́
´

21
+11

+11
−
‘‘

AA
AA

AA
AA

21
−11

+11
−

>>

}}
}}

}}
}}

12
+12

−

Then ΦB maps Q to 12
+12

−; R± to 21
±11

+11
−; S and S′ to 21

+21
−; T± and T ′

± to 22
±; and U± to 41

±.

Note that ΦB reverses all closure relations except the two dashed edges indicating T± ⊂ S.

We are now in a position to determine the size of the fiber Φ−1
P (OK) for OK ∈ K\N θ

P . For
ξ ∈ OK , let AK(ξ) (resp. AG(ξ)) denote the component group of the centralizer in K (resp. G) of ξ.
Obviously there is a natural map

AK(ξ) → AG(ξ)

which we often invoke implicitly. Write Sp(ξ) for the Springer representation of W × AG(ξ) on the
top homology of the Springer fiber over ξ (normalized so that ξ = 0 gives the sign representations of
W ). Let

Sp(ξ)AK = HomAK(ξ) (Sp(ξ), 11) .

Proposition 2.8. Fix ξ ∈ OK . Then

#Φ−1
P (OK) = dimHomW (P)

(
sgn, Sp(ξ)AK

)

= dimHomW (indW
W (P)(sgn), Sp(ξ)AK ).

Proof. The second equality follows by Frobenius reciprocity. For the first, set

SP = {Q ∈ K\B | Q is dense in π−1
P (πP(Q))}.

According to the discussion around (2.3) and Proposition 2.4(1), πP implements a bijection

SP ∩ Φ−1
B (OK) → Φ−1

P (OK).
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We will count the left-hand side if K is connected. If K is disconnected, there are a few subtleties
(none of which are very serious) which are best treated later.

Consider the top integral Borel-Moore homology of the conormal variety T ∗
KP . Since we have

assumed K is connected, the closures of the individual conormal bundles exhaust the irreducible
components of T ∗

KP , and their classes form a basis of the homology,

H∞
top (T ∗

KP ,Z) =
⊕

Q∈K\P

[T ∗
QP ].

If P = B, Rossmann [R] (extending earlier work of Kazhdan-Lusztig [KL]) described a construction
giving an action of W on this homology space. The action is graded in the following sense that if
Q ∈ Φ−1

B (OK), then

w · [T ∗
QB]

is a linear combination of conormal bundles to orbits in fibers Φ−1
B (O′

K) with O′
K ⊂ OK . Hence if

we set

Φ−1
B (OK ,≤) =

⋃

O′

K
⊆OK

Φ−1
B (O′

K)

and

Φ−1
B (OK , <) =

⋃

O′

K
(OK

Φ−1
B (O′

K)

then

M(OK) :=
⊕

Q∈Φ−1

B
(OK ,≤)

[T ∗
QB]

/ ⊕

Q∈Φ−1

B
(OK ,<)

[T ∗
QB]

is a W module with basis indexed by Φ−1
B (OK). Rossmann’s construction shows that

M(OK) ≃ Sp(ξ)AK ,

where ξ ∈ OK as above. This proves the proposition for P = B. For the general case, we must
identify SP in terms of the Weyl group action. It follows from Rossmann’s constructions that

sα · [T ∗
QB] = −[T ∗

QB]

if and only if

dim π−1
α (πα(Q)) = dim(Q).

Thus (2.3) implies that SP ∩Φ−1
B (OK) indexes exactly the basis elements of M(OK) which transform

by the sign representation of the Weyl group of type P . The proposition thus follows in the case of
K connected. (A complete proof in the disconnected case is discussed after Proposition 2.13.) ˜

The above proof is extrinsic, in the sense that it is deduced from a statement about the P = B
case. We may argue more intrinsically (without reference to B) using results of Borho-MacPherson
[BM] as follows.

Fix ξ ∈ N θ
P and consider µ−1

P (ξ). In terms of the identification around (1.1),

µ−1
P (ξ) = {(p, ξ) | ξ ∈ (g/p)∗}.

(Borho-MacPherson write P0
ξ for µ−1

P (ξ) and call it a Spaltenstein variety.) Clearly AG(ξ), and hence

AK(ξ), act on the set of irreducible components Irr(µ−1
P (ξ)). Fix C ∈ Irr(µ−1

P (ξ)), and consider
Z(C) := K ·C ⊂ T ∗P . Since ξ ∈ N θ

P ⊂ N (g/k)∗, it follows from (1.2) that Z(C) is in fact contained
in the conormal variety

Z(C) ⊂ T ∗
KP ,

which is of course pure-dimensional of dimension dim(P). Hence

dim(Z(C)) ≤ dim(P).
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But clearly
dim(Z(C)) = dim(K · ξ) + dim(C),

and thus

(2.9) dim(C) ≤ dim(P) − dim(K · ξ).

Write Irrmax(µ
−1
P (ξ)) for those irreducible components whose dimensions actually achieve the upper

bound. (This set could be empty, for instance, as we shall see in Example 3.3 below when P = Pβ

and ξ is a representative of a minimal nilpotent orbit.)

Proposition 2.10. Fix ξ ∈ N θ
P , set OK = K · ξ, assume Φ−1

P (OK) is nonempty, and fix Q ∈
Φ−1

P (OK). Then

C(Q) := T ∗
QP ∩ µ−1

P (ξ)

is an AK(ξ) orbit on Irrmax(µ
−1
P (ξ)). The assignment Q 7→ C(Q) gives a bijection

(2.11) Φ−1
P (OK) −→ AK(ξ)\Irrmax(µ

−1
P (ξ)).

Proof. Fix C ∈ Irrmax(µ
−1
P (ξ)). Then dim(Z(C)) = dim(P) by definition. Notice that Z(C) is

nearly irreducible (and it is if K is connected). In general, the component group of K (which is finite
by hypothesis) acts transitively on the irreducible components of Z(C). But from the definition of
T ∗

KP , the closure of each conormal bundle T ∗
QP consists of a subset of irreducible components of

T ∗
KP on which the component group of K acts transitively. Since dim(Z(C)) = dim(T ∗

KP), it follows
that there is some Q such that

Z(C) = T ∗
QP ;

moreover Q must be an element of Φ−1
P (OK). Clearly Z(C) = Z(C′) if and only if C and C′ are in

the same AK(ξ) orbit. The assignment C 7→ Q gives a bijection AK(ξ)\Irrmax(µ
−1
P (ξ)) → Φ−1

P (OK)
which, by construction, is the inverse of the map in (2.11). This completes the proof. ˜

Corollary 2.12. Let ξ1, . . . , ξk be representatives of the K orbits on N θ
P . Then the map

Q −→
(
ΦP(Q), T ∗

QP ∩ µ−1
P (ξi)

)

for i the unique index such that K · ξi dense in ΦP(Q) implements a bijection

K\P −→
∐

i

AK(ξi)\Irrmax(µ
−1
P (ξi)).

Thus everything reduces to understanding the irreducible components of µ−1
P (ξ) of maximal

possible dimension. For this we need some nontrivial results of Borho-MacPherson. [BM, The-
orem 3.3] shows that the fundamental classes of the elements of Irrmax(µ

−1
P (ξ)) index a basis of

HomW (P)(Sp(ξ), sgn). Actually, to be precise, their condition for C to belong to Irrmax(µ
−1
P (ξ)) is

that

dim(C) = dim(P) −
1

2
dim(G · ξ).

To square with (2.9), we need to invoke the result of Kostant-Rallis [KR] that K · ξ is Lagrangian in
G · ξ. In any case, because AG(ξ) acts on Sp(ξ) and commutes with the W action, AG(ξ) also acts on
HomW (P)(sgn, Sp(ξ)), and [BM, Theorem 3.3] shows that this action is compatible with the action

of AG(ξ) on Irr(µ−1
P (ξ)). In particular this implies the following result.

Proposition 2.13. Fix ξ ∈ N θ
P . Then the number of AK(ξ) orbits on Irrmax(µ

−1
P (ξ)) equals the

dimension of
HomW (P)

(
sgn, Sp(ξ)AK

)
.

Combining Proposition 2.10 and 2.13, we obtain an alternate proof of Proposition 2.8 which makes
no assumption on the connectedness of K.
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Remark 2.14. The P = B case of Corollary 2.12 is due to Springer (unpublished). In this case,
W (B) is trivial, and thus Φ−1

B (OK) has order equal to the W -representation Sp(ξ)AK .

It is of interest to compute the bijection of Corollary 2.12 as explicitly as possible. For instance,
if GR = GL(n,C) and P = B consists of pairs of flags, the left-hand side of the bijection in Corollary
2.12 consists of elements of the symmetric group Sn. On the right-hand side, all A-groups are
trivial, and the irreducible components in question amount to pairs of irreducible components of the
usual Springer fiber. Such pairs are parametrized by same-shape pairs of standard Young tableaux.
Steinberg [St] showed that the bijection of the corollary amounts to the classical Robinson-Schensted
correspondence.

A few other classical cases have been worked out explicitly ([vL], [Mc1], [T1], [T3]). But general
statements are lacking. For instance, given Q and Q′, there is no known effective algorithm to decide
if ΦP(Q) = ΦP(Q′). The next section is devoted to special cases of the parametrization which lead
to nice general statements. It might appear that these special cases are too restrictive to be of much
use. But it turns out that they encode exactly the geometry needed for the Adams-Barbasch-Vogan
definition of Arthur packets. This is explained in Section 4.

3. P-regular K orbits

The main results of this section are Proposition 3.7(b) and Remark 3.10 which together give an
effective computation of a portion of the bijection of Proposition 2.10 under the assumption that µP

is birational.

Definition 3.1 (see [ABV, Definition 20.17]). A nilpotent orbit OK of K on N θ
P is called P-regular

(or simply regular, if P is clear from the context) if G · OK is dense in µP(T ∗P). Since OK is
Lagrangian in G · OK [KR], this condition is equivalent to

dim(OK) =
1

2
dimµ(T ∗P) = dim(g/p),

for any p ∈ P . In other words, P-regular nilpotent K-orbits meet the complex Richardson orbit
induced from p. An orbit Q of K on P is called P-regular (or simply regular) if ΦP(Q) is a P-regular
nilpotent orbit. Note that regular P-orbits need not exist in general (for instance, if GR is compact
and P is not trivial).

Since regular nilpotentK orbits are automatically maximal in the closure order on N θ
P , Proposition

2.4(2) shows that regular K orbits on P are minimal in the weak closure order:

Proposition 3.2. Suppose Q is a regular K orbit on P. Then Q is minimal in the weak closure
order on K\P.

The next example shows that regular K orbits on P need not be minimal in the full closure order
(i.e. they need not be closed).

Example 3.3. Retain the notation of Example 2.5. Let Pα (resp. Pβ) consist of parabolic subalge-
bras of type α (resp. β) and write πα and πβ in place of πPα

and πPβ
, and similarly for µα and µβ .

Then the closure order on K\Pα is obtained by the appropriate restriction from (2.6). (Subscripts
now indicate dimensions; dashed edges are those covering relations present in the full order but not
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the weak one.)

(3.4) πα(Q)3

πα(R+)2

<<xxxxxxxx
πα(R−)2

bbFFFFFFFF

πα(T ′
+)0

;;xxxxxxxx
πα(S′)1

bb <<

πα(T ′
−)0

ccFFFFFFFF

The closure order on K\Pβ is again obtained by restriction from (2.6). (Once again subscripts
indicate dimensions.)

(3.5) πβ(Q)3

πβ(S)2

OO

πβ(T+)1

<<

πβ(T−)1

bb

In this case N θ
α = N θ

β , and the closure order on K\N θ
P is just the bottom three rows of (2.7),

(3.6) 22
+

^^

==
==

==
=

21
+21

−
>>

}}
}}

}}
}}

‘‘

AA
AA

AA
AA

22
−

@@

´́
´́

´́
´

21
+11

+11
−
‘‘

AA
AA

AA
AA

21
−11

+11
−

>>

}}
}}

}}
}}

12
+12

−

From Proposition 5.2 below (for instance), both Φα = ΦPα
and Φβ = ΦPβ

are injective. There are
enough edges in the weak closure order on K\Pα so that Proposition 2.4(1) allows one to conclude
that Φα reverses the full closure order. In fact, Φα is the obvious order reversing bijection of (3.4)
onto (3.6). Hence πα(T ′

±) and πα(S′) are Pα-regular.

By contrast, Φβ does not invert the dashed edges in (3.5): Φβ maps πβ(Q) to the zero orbit, and
the three remaining orbits to the three orbits of maximal dimension in N θ

P . Hence πβ(T ′
±) and πβ(S)

are Pβ-regular. In particular, πβ(S) is a Pβ-regular orbit which is not closed.

Finally note that the fiber of Φα over 21
±11

+11
− consists of a single element, while the corresponding

fiber for Φβ is empty. This is consistent with Proposition 2.8 since Sp(ξ) (for ξ a representative of
these orbits) is a one dimensional representation on which the simple reflection sα (resp. sβ) acts
nontrivially (resp. trivially). ˜

An essential difference in the two cases considered in Example 3.3 is that µα is birational, but µβ

has degree two.

Proposition 3.7 ([ABV, Theorem 20.18]). Suppose µP is birational onto its image. Then:

(a) Any regular K orbit on P consists of θ-stable parabolic subalgebras (and hence is closed).
(b) ΦP is a bijection from the set of regular K orbits on P to the set of regular nilpotent K orbits

on N θ
P .
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Proof. Fix a P-regular nilpotent K orbit OK in N θ
P , ξ ∈ OK , and Q ∈ Φ−1

P (OK). Since µP

is birational, the set Irrmax(µ
−1
P (ξ)) is a single point, and so Proposition 2.10 shows that Q is the

unique orbit in Φ−1
P (OK). This gives (b).

Again since µP is birational, there is a unique parabolic p ∈ Q such that ξ ∈ (g/p)∗. Since
θ(ξ) = −ξ, θ(p) is also such a parabolic. So θ(p) = p. Thus Q = K · p consists of θ-stable parabolic
subalgebras. This gives the first part of (a). The same (well-known) proof of the fact that K orbits
of θ-stable Borel subalgebras are closed (for example, [Mi, Lemma 5.8]), also applies to show that
orbits of θ-stable parabolics are closed. (It is no longer true that a closed K orbit on P consists of
θ-stable parabolic subalgebras. But if a θ-stable parabolic algebra in P exists, all closed orbits do
indeed consist of θ-stable parabolic subalgebras.) ˜

Because of the good properties in Proposition 3.7, we will mostly be interested in P-regular orbits
when µP is birational. For orientation (and later use in Section 4) it is worth recalling a sufficient
condition for birationality from [He]; see also [CM, Theorem 7.1.6] and [ABV, Lemma 27.8].

Proposition 3.8. Suppose O is an even complex nilpotent orbit. Let P denote the variety of parabolic
subalgebras in g corresponding to the subset of the simple roots labeled 0 in the weighted Dynkin
diagram for O (e.g. [CM, Section 3.5]). Then O is dense in µP(T ∗P) and µP is birational.

˜

Return to Proposition 3.7(a). Example 5.12 below shows that if µP is birational, then not every
(necessarily closed) K orbit of θ-stable parabolic subalgebras on P need be regular. So the question
becomes: can one give an effective procedure to select the regular K orbits on P from among all
orbits of θ-stable parabolics (when µP is birational)? This is only a small part of computing the
parametrization of Corollary 2.12, so it is perhaps surprising that the answer we give after Proposition
3.9 depends on the power of the Kazhdan-Lusztig-Vogan algorithm for GR, the real form of G with
complexified Cartan involution θ.

We need a few definitions. Recall that the associated variety of a two-sided ideal in U(g) is the
subvariety of g∗ cut out by the associated graded ideal grI (with respect to the standard filtration
on U(g)) in grU(g) = S(g). (From [BB1], if I is primitive, then AV(I) is the closure of a single
nilpotent coadjoint orbit.) Finally if p is a θ-stable parabolic subalgebra of g, recall the irreducible
(g,K)-module Ap constructed in [VZ]. (It would be more customary to denote these modules Aq,
but we have already used the letter Q for another purpose.)

Proposition 3.9. Suppose µP is birational. Fix a closed K orbit Q on P consisting of θ-stable
parabolic subalgebras. Fix p ∈ Q. Then Q is P-regular in the sense of Definition 3.1 if and only if

AV(Ann(Ap)) = µ(T ∗P),

the closure of the complex Richardson orbit induced from p.

Remark 3.10. We remark that the condition of the proposition is effectively computable from a
knowledge of the Kazhdan-Lusztig-Vogan polynomials for GR. More precisely, the results of Section
2 allow us to enumerate the closed orbits of K on P from the structure of K orbits on B. In
turn, the description of K\B has been implemented in the command kgb in the software package
atlas (available for download from www.liegroups.org). Moreover, from the description in [VZ]
(implemented in the atlas command blocku), one may determine which closed orbits consist of
θ-stable parabolic subalgebras. (Alternatively, one may implement the algorithms of [BH, Section
3.3], at least if K is connected.) For a representative p of each such orbit, one then uses the command
wcells, to enumerate the cell of Harish-Chandra modules containing the Vogan-Zuckerman module
Ap. (The computation of cells relies on computing Kazhdan-Lusztig-Vogan polynomials.) Finally
AV(Ann(Ap)) = µ(T ∗P) if and only if the cell containing Ap affords the Weyl group representation
Sp(ξ)AG (with notation as in Section 2), where ξ is an element of the Richardson orbit induced from
p. Again, this is an effectively computable condition and is easy to implement from the output of
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atlas. Hence if µP is birational, there is an effective algorithm to enumerate the P-regular orbits of
K on P.

Remark 3.11. Suppose O is an even complex nilpotent orbit, so that Proposition 3.8 applies.
Then Proposition 3.7(b) shows that the algorithm of Remark 3.10 also enumerates the K orbits in
O∩(g/k)∗. Using the Kostant-Sekiguchi correspondence, this amounts to the enumeration of the real
forms of O, i.e. GR orbits on O∩g∗

R. By contrast, if O is not even, the only known way to enumerate
the real forms of O involves case-by-case analysis.

Proposition 3.9 is known to experts, but we sketch a proof (of more refined results) below; see
also [ABV, Chapter 20]. We begin with some representation-theoretic preliminaries. Let DP denote
the sheaf of algebraic differential operators on P , and let DP denote its global section. Since the
enveloping algebra U(g) acts on P by differential operators, we obtain a map U(g) → DP . Let IP
denote its kernel, and RP its image. By choosing a base-point p◦ ∈ P , it is easy to see that IP is the
annihilator of the irreducible generalized Verma module induced from p◦ ∈ P with trivial infinitesimal
character. We will be interested in studying Harish-Chandra modules whose annihilators contain IP ,
i.e. (RP ,K)-modules. For orientation, note that if P = B, IB is a minimal primitive ideal, and thus
any Harish-Chandra module with trivial infinitesimal character contains it.

Unlike the case of P = B, U(g) need not surject onto DP in general, and so RP ≃ U(g)/IP is
generally a proper subring of DP . Thus the localization functor

RP -mod −→ DP -mod

X −→ X := DP ⊗RP
X.

need not be an equivalence of categories. But nonetheless we have that the appropriate irreducible
objects match. (Much more conceptual statements of which the following proposition is a consequence
have recently been established by S. Kitchen.)

Proposition 3.12. Suppose X is an irreducible (DP ,K)-module. Then its restriction to RP is
irreducible.

Sketch. Irreducible (DP ,K)-modules are parametrized by irreducible K equivariant flat connec-
tions on P . We show that the irreducible (RP ,K)-modules are also parametrized by the same set.
The parametrizations have the property that support of the localization of either type of module
parametrized by such a connection L is simply the closure of the support of L. This implies there
are the same number of such irreducible modules and hence implies the proposition.

Let X be an irreducible (RP ,K)-module. Hence we may consider X as an irreducible (g,K)-
module, say X ′, whose annihilator contains IP . By localizing on B, we may consider the corre-
sponding irreducible K equivariant flat connection on B, say L′, parametrizing X ′. The condition
that Ann(X ′) ⊃ IP can be translated into a geometric condition on L′ using [LV, Lemma 3.5], the
conclusion of which is that L′ fibers over an irreducible flat K-equivariant connection on P (with
fiber equal to the trivial connection on Bl). This implies that irreducible (RP ,K)-modules are also
parametrized by K equivariant flat connections on P , as claimed, and the proposition follows. ˜

Remark 3.13. Proposition 3.12 need not hold when considering twisted sheaves of differential
operators corresponding to singular infinitesimal characters.

Next suppose X is an irreducible RP module. Let (X i) denote a good filtration on its localization
X compatible with the degree filtration on DP . Let CV(X) denote the support of gr(X ). This is
well defined independent of the choice of filtration. Moreover, there is a subset cv(X) ⊂ K\P such
that

CV(X) =
⋃

Q∈cv(X)

T ∗
QP .
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The set cv(X) is difficult to understand, but there are two easy facts about it. First, ifX is irreducible,
there is a dense K orbit, say supp◦(X) in the support of X ; then supp◦(X) ∈ cv(X). Moreover if

Q ∈ cv(X), then Q ∈ supp◦(X). So, for example, if supp◦(X) is closed, then cv(X) = {supp◦(X)}.

Finally we define

AV(X) = µ(CV(X)).

(Alternatively one may define AV(X) as in [V3] without localizing. The fact that the two definitions
agree follows from [BB3, Theorem 1.9(c)]) Clearly AV(X) is the union of closures of K orbits on N θ

P .
We let av(X) denote the set of these orbits.

Here is how these invariants are tied together.

Theorem 3.14. Retain the setting above. Then

(1) AV(IP ) = µ(T ∗P).
(2) If X is an irreducible (RP ,K)-module, then

G · AV(X) = AV(Ann(X)) ⊂ AV(IP ).

Proof. Part (1) is Theorem 4.6 in [BB1]. The equality in part (2) is proved in [V3, Section 6]; the
inclusion follows because X is an RP = U(g)/IP module. ˜

Proposition 3.15. Suppose X is an irreducible (RP ,K)-module such that there exists a P-regular
K orbit Q ∈ cv(X). (For instance, suppose supp◦(X) is P-regular.) Then ΦP(Q) is a K orbit of
maximal dimension in AV(X); that is, ΦP(Q) ∈ av(X).

Proof. Since AV(X) = µ(CV(X)) and since Q ∈ cv(X),

(3.16) ΦP(Q) ⊂ AV(X)

for any (RP ,K)-module. If Q is P-regular, then the G saturation of the left-hand side of (3.16) is
dense in µ(T ∗P). But by Theorem 3.14 the right-hand side of (3.16) is also contained in µ(T ∗P). So
the current proposition follows. ˜

Corollary 3.17. Suppose X is an irreducible (RP ,K)-module. Then the following are equivalent.

(a) there exist a P-regular orbit Q ∈ cv(X);
(b) there exists a P-regular orbit OK ∈ av(X);
(c) Ann(X) = IP ;
(d) AV(Ann(X)) = AV(IP ), i.e. AV(Ann(X)) = µ(T ∗P).

Proof. The equivalence of (a) and (b) follows from the definitions above. Since the annihilator of
any RP module contains IP , the equivalence of (c) and (d) follows from [BKr, 3.6]. Theorem 3.14
and the definitions gives the equivalence of (b) and (d). ˜

Proof of Proposition 3.9. If p ∈ P is a θ-stable parabolic, then the Vogan-Zuckerman module Ap

is the unique irreducible (RP ,K)-module whose localization is supported on the closed orbit K · p

and thus, as remarked above, cv(Ap) = {K · p}. So Proposition 3.9 is a special case of Corollary
3.17. ˜

4. applications to special unipotent representations

The purpose of this section is to explain how the algorithm of Remark 3.10 produces special
unipotent representations. Much of this section is implicit in [ABV, Chapter 27].

Fix a nilpotent adjoint orbit O∨ for g∨, the Langlands dual of g. Fix a Jacobson-Morozov triple
{e∨, h∨, f∨} for O∨, and set

χ(O∨) = (1/2)h∨.
11



Then χ(O∨) is an element of some Cartan subalgebra h∨ of g∨. There is a Cartan subalgebra h of g

such that h∨ canonically identifies with h∗. Hence we may view

χ(O∨) ∈ h∗.

There were many choices made in the definition of χ(O∨). But nonetheless the infinitesimal character
corresponding to χ(O∨) is well-defined; i.e. χ(O∨) is well-defined up to G∨ conjugacy and thus (via
Harish-Chandra’s theorem) specifies a well-defined maximal ideal Z(O∨) in the center of U(g). We
call χ(O∨) the unipotent infinitesimal character attached to O∨.

By a result of Dixmier [Di], there exists a unique maximal primitive ideal in U(g) containing
Z(O∨). Denote it by I(O∨), and let d(O∨) denote the dense nilpotent coadjoint orbit in AV(I(O∨)).
The orbit d(O∨) is called the Spaltenstein dual of O∨ (after Spaltenstein who first defined it in a
different way); see [BV, Appendix A].

Fix GR as above, and define

Unip(O∨) = {X an irreducible (g,K) module | Ann(X) = I(O∨)}.

This is the set of special unipotent representations for GR attached to O∨. Since the annihilator
of such a representation X is the maximal primitive ideal containing Z(O∨), X is as small as the
(generally singular) infinitesimal character χ(O∨) allows. These algebraic conditions are conjectured
to have implications about unitarity.

Conjecture 4.1 (Arthur, Barbasch-Vogan [BV]). The set Unip(O∨) consists of unitary representa-
tions.

We are going to produce certain special unipotent representations from the regular orbits of Defi-
nition 3.1. In order to do so, we need to shift our perspective and work on side of the Langlands dual
g∨. So let G′

R be a real form of a connected reductive algebraic group with Lie algebra g∨ and let K ′

denote the complexification of a maximal compact subgroup in G′
R. Fix an even nilpotent coadjoint

orbit O∨. (This is equivalent to requiring that χ(O∨) is integral.) Define P∨ as in Proposition 3.8.
Thus the main results of Section 3 are available in this setting.

LetX ′ denote an irreducible (RP∨ ,K ′)-module, and letX denote the Vogan dual ofX ′ in the sense
of [V2]. Thus X is an irreducible Harish-Chandra module for a group GR arising as the real points
of a connected reductive algebraic group with Lie algebra g. Moreover, X has trivial infinitesimal
character.

Recall that we are interested in representations with infinitesimal character χ(O∨). In order to
pass to this infinitesimal character, we need to introduce certain translation functors. There are
technical complications that arise in this setting since GR need not be connected (although it is in
Harish-Chandra’s class by our hypothesis). See [KnV, Section VII.14]. For the sake of exposition,
we will proceed as if GR were connected, and leave it to the reader to supply the details arising from
disconnectedness issues.

Fix a representative ρ ∈ h∗ representing the trivial infinitesimal character. Choose a representative
χ ∈ h∗ representing the (integral) infinitesimal character χ(O∨) so that χ and ρ lie in the same closed
Weyl chamber. Let ν = ρ − χ. After possibly passing to an appropriate cover, let F ν denote the
finite-dimensional representation of GR with extremal weight ν. Using it, define the translation
functor ψ = ψχ

ρ (as in [KnV, Section VII.13]) from the category of Harish-Chandra modules with
trivial infinitesimal character to the category of Harish-Chandra modules with infinitesimal character
χ(O∨).

Theorem 4.2 (cf. [ABV, Chapter 27]). Retain the notation introduced after Conjecture 4.1. In
particular, fix an even nilpotent orbit O∨, and let P∨ denote the variety of parabolic subalgebras
corresponding to the nodes labeled 0 in the weighted Dynkin diagram for O∨. Let X ′ be an irreducible
(RP∨ ,K ′)-module. Let Z = ψ(X) denote the translation functor to infinitesimal character χ(O∨)
applied to the Vogan dual X of X ′. Then the following are equivalent:

12



(a) Z is a (nonzero) special unipotent representation attached to O∨.
(b) there exists a P∨-regular orbit Q∨ ∈ cv(X ′).

Proof. From the properties of the duality explained in [V2, Section 14] (and the translation princi-
ple), Z is nonzero with infinitesimal character χ(O∨) if and only if X ′ is annihilated by IP∨ , i.e. if
and only if X ′ descends to a (DP∨ ,K)-module. Moreover Z is annihilated by a maximal primitive
ideal if and only if the DP∨-module X ′ has minimal possible annihilator, namely IP∨ . The conclusion
is that Z is special unipotent attached to O∨ if and only if X ′ is a (DP∨ ,K)-module annihilated by
IP∨ . So the the theorem follows from the equivalence of (a) and (c) in Corollary 3.17. ˜

Since the duality of [V2] is effectively computable, and since the same is true of the translation
functors ψ, the theorem shows Remark 3.10 translates into an effective construction of special unipo-
tent representations. More precisely, one uses Remark 3.10 to enumerate the relevant P∨-regular
orbits, and for each one constructs the representation X ′ = Ap of Proposition 3.9. As remarked in
the proof of Proposition 3.9, X ′ satisfies condition (b) of Theorem 4.2. Applying the construction of
the theorem gives special unipotent representations.

In fact, this construction may be understood further in light of the following refinement. In
the setting of Theorem 4.2, fix a P∨-regular orbit Q∨, and define A(Q∨) be the set of special
unipotent representations attached to O∨ produced by applying Theorem 4.2 to all modules X ′ with
Q∨ ∈ cv(X ′). Then the theorem implies

Unip(O∨) =
⋃

A(Q∨),

where the (not necessarily disjoint) union is over all P∨-regular orbits.

The sets A(Q∨) are the Arthur packets defined in [ABV, Chapter 27]. While there are effective
algorithms to enumerate Unip(O∨), there are no such algorithms for individual packets A(Q∨) (except
in favorable cases). In any event, the discussion of the previous paragraph shows that Remark 3.10
leads to an effective algorithm to enumerate an element of each Arthur packet of integral special
unipotent representations. These representatives are necessarily distinct.

5. examples

Example 5.1 (Maximal parabolic subalgebras for classical groups). Suppose G is classical
and P consists of maximal parabolic subalgebra. Then it is well-known that

indW
W (P)(sgn)

decomposes multiplicity freely as a W -module. Thus if Sp(ξ)AK is irreducible as a W -module, then
Proposition 2.8 implies Φ−1

P (OK) is a single orbit. In particular if the orbits of AK(ξ) and AG(ξ)

on irreducible components of the Springer fiber µ−1
B (ξ) coincide (for instance, if AK(ξ) surjects onto

AG(ξ) for each ξ), then Sp(ξ)AK = Sp(ξ)AG is irreducible and ΦP is injective.

Proposition 5.2. Suppose the real form GR of G corresponding to θ is a classical semisimple Lie
group with no complex factors whose Lie algebra has no simple factor isomorphic to so∗(2n) or
sp(p, q). If P consists of maximal parabolic subalgebras, then ΦP is injective.

Proof. Unfortunately this follows from a case-by-case analysis of the classical groups. First note
that the orbits of AK(ξ) and AG(ξ) on µ−1

B (ξ) are insensitive to the isogeny class of GR. So, by the
remarks preceding the proposition, it is enough to examine when the two kinds of orbits coincide
for a simply connected group GR with simple Lie algebra. In type A, all A-groups are trivial (up
to isogeny) so there is nothing to check. It follows from direct computation that AK(ξ) surjects on
AG(ξ) for GR = Sp(2n,R) and SO(p, q), but that the image of AK(ξ) in AG(ξ) is always trivial for
Sp(p, q) and SO∗(2n). This completes the case-by-case analysis and hence the proof.
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Remark 5.3. For the groups in Proposition 5.2, the map ΦB is computed explicitly in [T1] and [T3].
Using Proposition 2.4(1) this gives one (rather roundabout) way to compute ΦP in these cases. For
exceptional groups, the injectivity of the proposition fails. See Example 5.12 below.

Example 5.4. Suppose now GR = Sp(2n,R) and P consists of maximal parabolic of type corre-
sponding to the subset of simple roots obtained by deleting the long one. (So if n = 2, P = Pα

in Example 3.3.) Then the analysis of the preceding example extends to show that ΦP is an order-
reversing bijection. The closure order on K\N θ

P (and hence K\P) is as follows.

(5.5) 2n
+

aa

BB
BB

BB
BB

2n−1
+ 21

−
;;

xxxxxxxx dd

IIIIIIIII
. . . 2n−1

− 21
+

::

uuuuuuuuu cc

FFFFFFFF
2n
−

==

{{
{{

{{
{{

. . .

FFFFFFFF . . .

uuuuuuuuu

IIIIIIIII . . .

xxxxxxxx

21
+1n−1

+ 1n−1
−
cc

FFFFFFFF
21
−1n−1

+ 1n−1
−

;;

xxxxxxxx

1n
+1n

−

Here, as before, we are using the parametrization of K\N θ
P given in [CM, Theorem 9.3.5]. There

are thus n + 1 orbits which are P-regular, all of which are closed according to Proposition 3.7(a)
(which applies since P is attached via Proposotion 3.8 to the even complex orbit with partition 2n).
Theorem 4.2 produces n+ 1 special unipotent representations for SO(n, n+ 1).

Example 5.6. Suppose GR = U(n, n) and P corresponds to the subset of simple roots obtained
by deleting the middle simple root in the Dynkin diagram of type A2n−1. Then ΦP is an order
reversing bijection, and the partially ordered sets in question again look like that (5.5) using the
parametrization of K\N θ

P given in [CM, Theorem 9.3.3]. Again there are n + 1 orbits which are
P-regular. Theorem 4.2 produces n+1 special unipotent representation for GL(2n,R), each of which
turns out to be a constituent of maximal Gelfand-Kirillov dimension in the degenerate principal
series for GL(2n,R) induced from a one-dimensional representation of a Levi factor isomorphic to a
product of n copies of GL(2,R).

In terms of representation theory of GR = U(n, n), it is well-known that the enveloping algebra
in this case does surject on the ring of global differential operators on P (e.g. the discussion of
[T2, Remark 3.3]) and localization is an equivalence of categories. Because all Cartan subgroups in
U(n, n) are connected, the only irreducible flat K-equivariant connections on P are the trivial ones
supported on single K orbits. The map Q 7→ ΦP(Q) coincides with the map which sends the unique
irreducible (RP ,K)-module supported on the closure of Q to the dense orbit in its (irreducible)
associated variety, and is a bijection between such irreducible modules and the K orbits on N θ

P . It
would be interesting to see if this observation could be used to give a geometric explanation of the
computation of composition series of certain degenerate principal series for U(n, n) first given in [Sa]
and later reproved in [Le]. (See, for instance, Sahi’s module diagrams reproduced in [Le, Figure 7],
for example.)

Example 5.7. Suppose GR = Sp(1, 1), a real form of G = Sp(4,C). If O is the subregular nilpotent
orbit for g and ξ ∈ O ∩ (g/k)∗, then AK(ξ) is trivial, but AG(ξ) ≃ Z/2. So the proof of Proposition
5.2 does not apply. Let α denote the short simple root and β the long one. The closure order on
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K\B is given by

(5.8) Q

R

β
OO

S+

α
>>||||

S−

α
‘‘BBBB

The picture for K\Pα is

(5.9) πα(Q)3

πα(R)2

OO

and for K\Pβ

(5.10) πβ(Q)3

πβ(S+)2

88qqqqqq
πβ(S−)2

ffMMMMMM

Here N θ
α = N θ

β = N θ
B, and the closure order of K orbits is simply

(5.11) 21
+21

−

12
+12

−

OO

in the notation of [CM, Theorem 9.3.5]. Then Φα is an order reversing bijection, but Φβ is two-to-one
over 12

+12
−. The reason is that

Sp(ξ) = std ⊕ χ,

where std is the two-dimensional standard representation of W and χ is a character on which the
simple reflection sα acts trivially and on which sβ acts nontrivially. The orbit πα(R) is Pα-regular,
and the orbits πβ(S±) are Pβ-regular.

Example 5.12. As an example of what can happen in the exceptional cases, let G be the (simply
connected) connected complex group of type F4 and θ correspond to the split real form GR of G.
(So K is a quotient of is Sp(3,C)× SL(2,C) by Z/2.) Then the corresponding real form GR is split.
Let P denote the variety of maximal parabolic obtained by deleting the middle long root from the
Dynkin diagram, and let O denote the corresponding Richardson orbit. Then O is 40 dimensional
and is labeled F4(A3) in the Bala-Carter classification. Moreover O is the unique orbit which is fixed
under Spaltenstein duality. (Here we are of course identifying g and g∨.) For ξ ∈ O, AG(ξ) = S4,
the symmetric group on four letters. The weighted Dynkin diagram of O has the middle long root
labeled 2 and all others nodes labeled 0. So P corresponds to O as in Proposition 3.8.

From results of Djoković (recalled in [CM, Section 9.6]) there are 19 orbits of K on N θ
P . They are

labeled 0–18; the orbit corresponding to label i will be denoted Oi
K , and ξi will denote an element

of Oi
K . Orbits O16

K ,O17
K , and O18

K are the three K orbits on O ∩ (g/k)∗. From the discussion leading
to [Ki, Table 2], it follows that AK(ξi) surjects onto AG(ξi) for i = 0, . . . , 15. In each of these cases,
AG(ξ) is either trivial or Z/2. We also have AK(ξ16) = AG(ξ16) = S4. But AK(ξ17) = D4, the
dihedral group with eight elements, and AK(ξ17) → AG(ξ17) is the natural inclusion into S4. Finally,
AK(ξ18) = Z/2 × Z/2 which injects into AG(ξ18).

For i = 17 and 18, it is not immediately obvious how to read off Sp(ξi)AK(ξi) from, say, the tables
of [Ca]. But for i = 0, . . . , 16, the component group calculations of the previous paragraph imply
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that Sp(ξi)AK(ξi) = Sp(ξi)AG(ξi), and such representations are indeed tabulated in [Ca]. Applying
Proposition 2.8, it is then not difficult to show that

#Φ−1(Oi
K) = 1 if i ∈ {0, 1, 2, 3} ∪ {9, 10, . . . , 16}

and

#Φ−1(Oi
K) = 2 if i ∈ {4, 5, 6, 7, 8}.

In more detail, the G-saturation of O4
K and O5

K is the complex orbit A1 × Ã1 in the Bala-Carter
labeling, while O6

K , O7
K , and O8

K have G saturation labeled by A2. The corresponding irreducible

Weyl group representations in these two cases both appear with multiplicity two in indW
W (P)(sgn).

All other relevant multiplicities are one.

We thus conclude that there are 22 orbits of K on P which map via ΦP to some Oi
K for i =

0, . . . , 15. Meanwhile, using the software program atlas, one can compute the closure order of K on
B, and thus (as explained in Section 2), the closure order on K\P . Figure 4.1 gives the full closure
order for K\P . Vertices are labeled according to their dimension. (The edges in Figure 4.1 do not
distinguish between the weak and full closure order. Doing so would make the picture significantly
more complicated and difficult to draw.) There are thus 24 orbits of K on P . Since 22 have been
shown to map to Oi

K for i = 0, . . . , 15, one concludes that the the fiber of ΦP over Oi for i = 16 and
17 must consist of just one element in each case.

In particular there are three P-regularK orbits on P which are bijectively matched via Proposition
3.7(b) to O16

K , O17
K , and O18

K . But from the atlas computation of the closure order on K\P , there
are four closed orbits of K on P . (These are in fact exactly the four orbits which are minimal in the
weak closure order.) See Figure 5.12. The atlas labels of the closed orbits are 3, 22, 31, and 47.
Their respective dimensions are 0, 1, 2, and 3. Applying the algorithm of Remark 3.10, one deduces
that the three P-regular orbits are 3, 31, and 47. Theorem 4.2 thus produces three distrinct special
unipotent representations, one in each of the three Arthur packets for O = d(O).
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Figure 5.1. The full closure ordering of K-orbits on P for GR = F4 and O =
F4(A3). Vertices are labeled according to their dimensions and boxed vertices are
P-regular. Note, in particular, that not every closed orbit is P-regular.
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