MATH 1060 Sample Final Exam

The following three formulas may be helpful in solving problems from this exam.

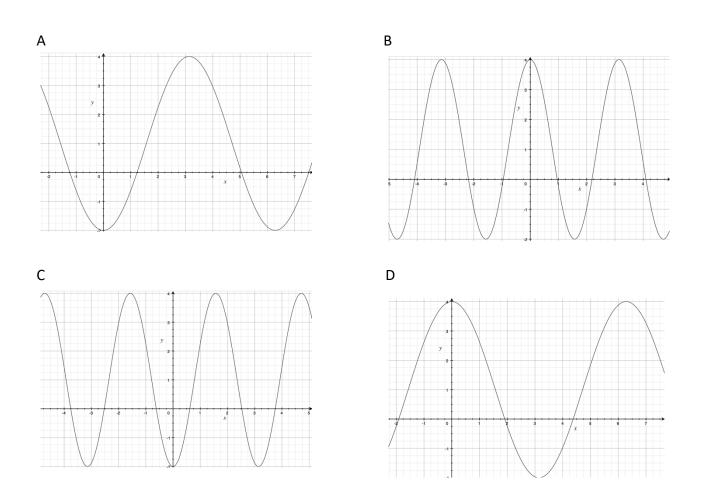
$$\vec{v} \cdot \vec{w} = ||\vec{v}|| \cdot ||\vec{w}|| \cos \theta$$
$$\operatorname{proj}_{\vec{w}} \vec{v} = \left(\frac{\vec{v} \cdot \vec{w}}{||\vec{w}||^2}\right) \cdot \vec{w}$$
$$\frac{\sin \alpha}{a} = \frac{\sin \beta}{b} = \frac{\sin \gamma}{c}$$
$$c^2 = a^2 + b^2 - 2ab \cos \gamma$$

Sum and Difference Identities	Double Angle Identities	Half-Angle Identities
 sin (u + v) = sin (u) cos (v) + cos (u) sin (v) sin (u - v) = sin (u) cos (v) - cos (u) sin (v) 	• $\cos(2\theta) = \cos^2\theta - \sin^2\theta$	$\left(\theta\right)$ $\sqrt{1+\cos\theta}$
• $\cos(u+v) = \cos(u)\cos(v) - \sin u\sin(v)$	• $\cos(2\theta) = 1 - 2\sin^2\theta$	• $\cos\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1+\cos\theta}{2}}$
• $\cos (u - v) = \cos (u) \cos (v) + \sin (u) \sin (v)$	• $\cos(2\theta) = 2\cos^2\theta - 1$	(θ) $(1-\cos\theta)$
• $\tan\left(u+v\right) = \frac{\tan(u) + \tan(v)}{1 - \tan\left(u\right)\tan\left(v\right)}$	• $\sin(2\theta) = 2\sin\theta\cos\theta$	• $\sin\left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1-\cos\theta}{2}}$
• $\tan (u - v) = \frac{\tan(u) - \tan(v)}{1 + \tan(u) \tan(v)}$	• $\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$	• $\tan\left(\frac{\theta}{2}\right) = \frac{\sin\theta}{1+\cos\theta}$

1. Evaluate each of the following.

a.) $\sin\left(\frac{9\pi}{4}\right)$ b.) $\cos\left(-\frac{7\pi}{6}\right)$ c.) $\tan(-330^{\circ})$ d.) $\sec\left(\frac{25\pi}{6}\right)$ 2. Let $\sin u = \frac{3}{5}$ with $0 < u < \pi/2$ and $\cos v = 12/13$ with $\frac{3\pi}{2} < v < 2\pi$. a.) Find $\sin(2u)$. b.) Find $\cos(u - v)$.

- 3. Given $f(x) = -3 \cos(2x + \pi) + 1$, find the following:
- a.) Amplitude.
- b.) Period.
- c.) Phase Shift.
- d.) Vertical Shift.
- e.) Choose the correct graph of f(x) from the four options below.



4. A triangle has one of its angles equal to 120°. The sides adjacent to that angle have length 5 and 3.

a.) Find the length of the third side.

b.) Find the angle, γ , that is opposite from the side of length 3. (Your answer should include an unevaluated inverse trig function.)

5. Given $\boldsymbol{u} = \langle 3, 6 \rangle$ and $\boldsymbol{v} = \langle 5, 2 \rangle$.

- a.) Calculate $u \cdot v$.
- b.) Find a unit vector in the direction of **u**.
- c.) Find the projection of $m{v}$ onto $m{u}$.

6. Find the complex third roots of -8. State the answers in rectangular form of complex numbers.

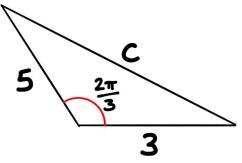
- 7. If $\sin \theta = \frac{1}{5}$ and $\frac{\pi}{2} < \theta < \pi$,
- a.) Sketch θ in standard position.
- b.) Find $\cos \theta$.
- c.) Find $\tan \theta$.
- d.) Find $\sec \theta$.
- e.) Find $\csc \theta$.
- f.) Find $\cot \theta$.
- 8.) Rewrite $sin(tan^{-1}(x))$ as an algebraic expression of x.
- 9. Evaluate the following.
- a.) $\cos^{-1}\left(\cos\left(\frac{3\pi}{2}\right)\right)$ b.) $\tan\left(\sin^{-1}\left(-\frac{3}{5}\right)\right)$
- 10.) Convert $\left(-\sqrt{2}, -\sqrt{2}\right)$ to a polar coordinate (r, θ) with r < 0 and $0 < \theta < \pi$.
- 11.) Given z = 9i and $w = -2\sqrt{3} + 2i$ calculate $\frac{z}{w}$. Your answer must be given in the form $r \cdot cis(\theta)$.
- 12.) a.) Find all the solutions of the equation $\sin^2(\theta) = \frac{1}{2}$.
- b.) Find all the solutions of the equation $\tan\left(x + \frac{\pi}{6}\right) = \sqrt{3}$.

Solutions to MATH 1060 Sample Final Exam
1.) a.)
$$\sin \frac{9\pi}{7} = \sin (\pi/4 + 2\pi) = \sin \pi/4 = \frac{1}{\sqrt{2}}$$

(or $\frac{\sqrt{2}}{2}$).
b.) $\cos(-\frac{7\pi}{6}) = \cos(-\frac{7\pi}{6} + 2\pi) = \cos(\frac{5\pi}{6}) = -\frac{\sqrt{3}}{2}$.
c.) $\tan(-330^{\circ}) = \tan(30^{\circ}) = \tan(\frac{\pi}{6})$
 $= \frac{\sin\pi/6}{\cos\pi/6} = \frac{1}{2}$
d.) $\sec \frac{25\pi}{6} = \sec(\frac{25\pi}{6} - 4\pi) = \sec \frac{\pi}{6}$
 $= \frac{1}{\cos\pi/6} = \frac{1}{\sqrt{3}} = \frac{2}{\sqrt{3}}$.

b.) period is
$$\frac{2\pi}{2} = \pi$$
.
c.) phase shift is $\frac{\pi}{2}$ (to the left,
or $-\pi/2$ to the right).
d.) vertical shift is 1.
e.) B is the correct graph.

4.) a.) 120° is $\frac{2\pi}{3}$ radians, so we have



By the law of cosines, $c = \sqrt{3^2 + 5^2} - 2 \cdot 3 \cdot 5 \cos\left(\frac{2\pi}{3}\right)^2$ $= \sqrt{9 + 25} - 30\left(-\frac{1}{2}\right)^2$ $= \sqrt{49^2} = 7$

b.) By the law of sines,

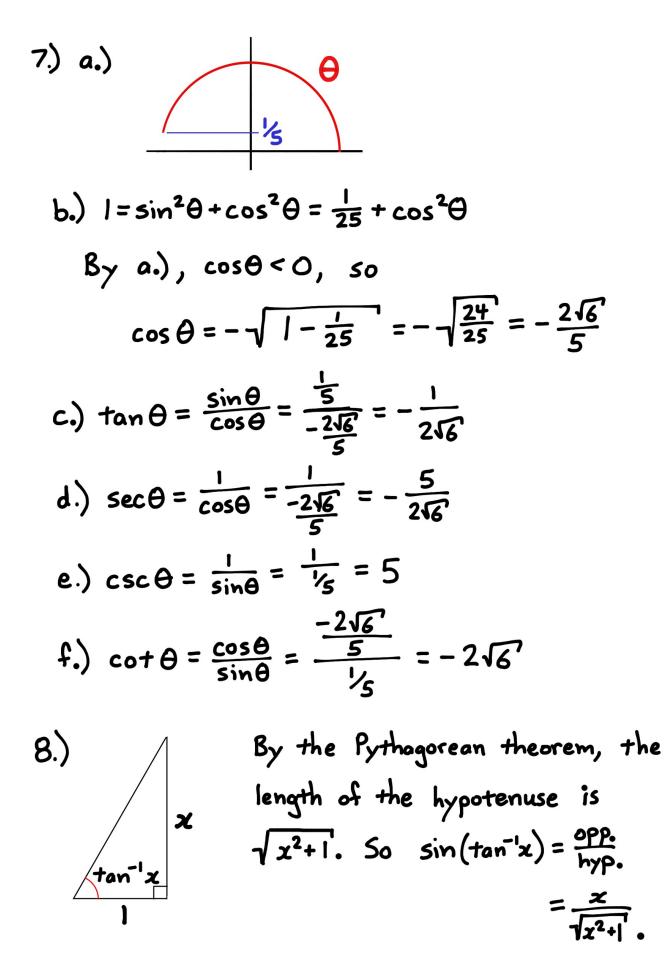
$$\frac{\sin\left(\frac{2\pi}{3}\right)}{7} = \frac{\sin \beta}{3}$$

so $\operatorname{sing} = \frac{3}{7} \operatorname{sin} \left(\frac{2\pi}{3} \right) = \frac{3}{7} \frac{\sqrt{37}}{2} = \frac{3\sqrt{3}}{14}$. Hence, $\gamma = \operatorname{sin}^{-1} \left(\frac{3\sqrt{3}}{14} \right)$.

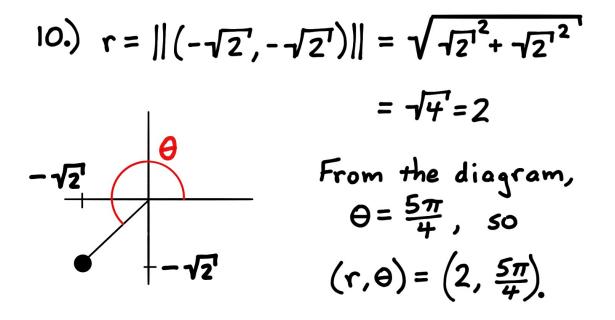
5.) a.)
$$u \cdot v = \langle 3, 6 \rangle \cdot \langle 5, 2 \rangle = 3 \cdot 5 + 6 \cdot 2 = 27$$

b.) $||u|| = \sqrt{3^2 + 6^2} = \sqrt{45^7} = 3\sqrt{5},$
so $\frac{u}{||u||} = \frac{\langle 3, 6 \rangle}{3\sqrt{5^7}} = \left\langle \frac{1}{\sqrt{5^7}}, \frac{2}{\sqrt{5^7}} \right\rangle$
c.) $proj_u v = \frac{u \cdot v}{||u||^2} u = \frac{27}{(3\sqrt{5})^2} \langle 3, 6 \rangle$
 $= \frac{3}{5} \langle 3, 6 \rangle$
 $= \left\langle \frac{9}{5}, \frac{18}{5} \right\rangle$

6.) Third roots of
$$-8 = 8 \operatorname{cis} \pi$$
 are
 $\sqrt[3]{8} \operatorname{cis}(\frac{\pi}{3}) = 2(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) = 2(\frac{1}{2} + i \frac{\sqrt{3}}{2})$
 $= |+i\sqrt{3}^{7}$
 $\sqrt[3]{8} \operatorname{cis}(\frac{2\pi}{3} + \frac{\pi}{3}) = 2\operatorname{cis} \pi = 2(-1+i0) = -2$
 $\sqrt[3]{8} \operatorname{cis}(\frac{4\pi}{3} + \frac{\pi}{3}) = 2\operatorname{cis} \frac{5\pi}{3} = 2(\frac{1}{2} - i \frac{\sqrt{3}}{2})$
 $= |-i\sqrt{3}^{7}$



9.) a.)
$$\cos^{-1} \left(\cos \left(\frac{3\pi}{2} \right) \right) = \cos^{-1} (0) = \frac{\pi}{2}$$
.
b.) $\sin \left(\sin^{-1} \left(-\frac{3}{5} \right) \right) = -\frac{3}{5}$
 $-\frac{3}{5} + ---$
 $l = \sin^{2} \left(\sin^{-1} \left(-\frac{3}{5} \right) \right) + \cos^{2} \left(\sin^{-1} \left(\frac{3}{5} \right) \right)$
 $= \left(-\frac{3}{5} \right)^{2} + \cos^{2} \left(\sin^{-1} \frac{3}{5} \right)$
Notice in the diagram that
 $\cos^{2} \left(\sin^{-1} \left(\frac{3}{5} \right) \right) > 0$, so
 $\cos \left(\sin^{-1} \left(\frac{3}{5} \right) \right) = \sqrt{1 - \frac{9}{25}} = \sqrt{\frac{16}{25}} = \frac{4}{5}$
Thus, $\tan \left(\sin^{-1} \left(\frac{3}{5} \right) \right) = \frac{\sin \left(\sin^{-1} \left(-\frac{3}{5} \right) \right)}{\cos \left(\sin^{-1} \left(-\frac{3}{5} \right) \right)}$
 $= \frac{-\frac{3}{5}}{\frac{4}{5}} = -\frac{3}{4}$.



||.)
$$|w| = \sqrt{(2\sqrt{3'})^2 + 2^2} = \sqrt{4 \cdot 3 + 4'} = 4.$$

Thus
$$\frac{\omega}{|\omega|} = \frac{1}{4} \left(-2\sqrt{3} + 2i \right) = -\frac{\sqrt{3}}{2} + \frac{1}{2}i$$

= $\cos\left(\frac{5\pi}{6}\right) + i\sin\left(\frac{5\pi}{6}\right)$
= $\cos\left(\frac{5\pi}{6}\right)$.

Hence, $w = |w| \frac{w}{|w|} = 4 \operatorname{cis}(\frac{5\pi}{6}).$

Note that $z=9i=9(0+i\cdot 1)=9$ cis $\frac{\pi}{2}$.

$$\frac{z}{w} = \frac{9\operatorname{cis}(\frac{\pi}{2})}{4\operatorname{cis}(\frac{5\pi}{6})} = \frac{9}{4}\operatorname{cis}(\frac{\pi}{2} - \frac{5\pi}{6})$$
$$= \frac{9}{4}\operatorname{cis}(-\frac{\pi}{3}).$$

12.) a.) If $\sin^2\theta = \frac{1}{2}$, then $\sin\theta = \frac{1}{\sqrt{2}}$ or $\sin\theta = -\frac{1}{\sqrt{2}}$.

From the diagram, $\theta = \frac{\pi}{4} + k\frac{\pi}{2}$ for some integer k.

b.) If $\tan(x+\frac{\pi}{6}) = \sqrt{3}^{7}$, then $x+\frac{\pi}{6} = \tan^{-1}(\sqrt{3})+k\pi$ for some integer k, since tangent is π -periodic. Since $\tan(\frac{\pi}{3}) = \frac{\sin \frac{\pi}{3}}{\cos \frac{\pi}{3}} = \frac{\sqrt{3}^{2}}{\frac{1}{2}} = \sqrt{3}^{7}$, we have $\tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$, so we have $x+\frac{\pi}{6} = \frac{\pi}{3} + k\pi$ and thus, $x = \frac{\pi}{6} + k\pi$.