PRELIMINARY EXAMINATION IN ALGEBRA

August 18, 2009

Instructions: Answer as many questions or parts of questions as you wish. A passing score consists of four complete answers or a reasonable equivalent.

- 1. Compute the number of elements of order 4 in the symmetric group S_7 .
- 2. Let G be a group of order p^n , where p is a prime number and n > 0 is an integer. Prove that the center of G is not trivial.
- 3. Let $E \subseteq F$ be a finite Galois extension of fields. Suppose that there is an element α in F such that $\alpha \not\in E$ and such that α is in every proper extension of E contained in F. Show that the Galois group of F over E is cyclic of prime power order.
- 4. Show that every finitely generated subgroup of \mathbb{Q}/\mathbb{Z} is cyclic.
- 5. Show that there are no simple groups of order 520.
- 6. Let M be a matrix with real coefficients such that $M^2+M+I=0$. Give the possible canonical forms for M
 - (a.) Over the real numbers \mathbb{R} (rational canonical form).
 - (b.) Over the complex numbers \mathbb{C} (Jordan canonical form).
- 7. Let R be a commutative ring, and let S be a multiplicative subset of R ($1 \in S$, and if s and t are in S, then st is in S). Show that an ideal I that is maximal with the property that $S \cap I = \emptyset$ is prime.
- 8. Determine for which integers q the polynomial X^3+1 has three distinct roots in the field with q elements.
- 9. Show that there exists a Galois extension of the field \mathbb{Q} of rational numbers with Galois group $\mathbb{Z}/5\mathbb{Z}$.
- 10. State and prove the Eisenstein Irreducibility Criterion.