PRELIMINARY EXAMINATION IN ALGEBRA

January 7, 2010

Instructions: Answer as many questions or parts of questions as you wish. A passing score consists of four complete answers or a reasonable equivalent.

- 1. Show that for any positive integer n, every element of order 2 in the alternating group A_n is the square of an element of order 4 in the symmetric group S_n .
- 2. Let G be a finite p-group, with |G| > p. Prove that the order of Aut(G) is divisible by p.
- 3. Let R be a ring with 1. A left R-module M is called simple if $M \neq 0$ and if the only submodules of M are M and 0. Show that every simple module is isomorphic to R/I for some maximal left ideal I and that I is unique if R is commutative.
- 4. In the category of Z-modules, is the module Q/Z (a) projective? (b) injective?
 (c) flat?
 Justify your answer.
- 5. Let G be a group of order p^2q , where p and q are distinct primes. Show that G has a normal Sylow subgroup.
- 6. Let M be a 5 by 5 matrix with real coefficients such that $M^2 = 2M I$. Show that the subspace of \mathbb{R}^5 consisting of vectors fixed by M has dimension at least 3.
- 7. Let R be a commutative ring with 1. Show that every R-module is free if and only if R is a field.
- 8. Compute the number of monic irreducible polynomials of degree 3 over the field \mathbb{Z}_7 .
- 9. Let F be a field that contains a primitive nth root of unity. Show that if a is an element of F and the field E is obtained from F by adjoining an nth root of a, then E is a Galois extension of F with cyclic Galois group.
- 10. State and prove Hilbert's basis theorem.