
UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

August 15th, 2016.

Instructions: This examination has two parts consisting of five problems in

part A and five in part B. You are to work three problems from

part A and three problems from part B. If you work more than the

required number of problems, then state which problems you wish

to be graded, otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must be

clearly and carefully presented and should be detailed as possible.

All problems are worth 20 points.

A. Ordinary Differential Equations: Do three problems for full credit

A1. Let f ∈ C1(U,Rn) for U ⊂ R
n and x0 ∈ U . Given the Banach space X = C([0, T ],Rn)

with norm ‖x‖ = max0≤t≤T |x(t)|, let

K(x)(t) = x0 +

∫ t

0

f(x(s))ds

for x ∈ X . Define V = {x ∈ X | ‖x−x0‖ ≤ ǫ} for fixed ǫ > 0 and suppose K(x) ∈ V (which
holds for sufficiently small T ), so that K : V → V with V a closed subset of X .

(a) Give the definition of a locally Lipschitz function in an open set U of a normed vector
space.

(b) Using the fact that f is locally Lipschitz in U with Lipschitz constant L0, and taking
x, y ∈ V show that

|K(x(t))−K(y(t))| ≤ L0t‖x− y‖.
Hence, show that

‖K(x)−K(y)‖ ≤ L0T ‖|x− y‖ x, y ∈ V.

(c) State the contraction mapping principle on a Banach space.

(d) Choosing T < 1/L0, apply the contraction mapping principle to show that the integral
equation has a unique continuous solution x(t) for all t ∈ [0, T ] and sufficiently small
T . Hence establish existence and uniqueness of the initial value problem

dx

dt
= f(x), x(0) = x0.

A2. Consider the T –periodic non-autonomous linear differential equation

ẋ = A(t)x, x ∈ Rn, A(t) = A(t+ T )

Let Φ(t) be a fundamental matrix with Φ(0) = I.

(a) Show that there exists at least one nontrivial solution χ(t) such that

χ(t+ T ) = µχ(t)

where µ is an eigenvalue of Φ(T ).
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(b) Suppose that Φ(T ) has n distinct eigenvalues µi, i = 1, . . . , n. Show that there are
then n linearly independent solutions of the form

xi = pi(t)e
ρit

where the pi(t) are T –periodic. How is ρi related to µi?

(c) By determining the time derivative of the Wronskian W (t) = det[Φ(t)], prove that the
product of the Floquet multipliers µi satisfies

n
∏

i=1

µi = exp

(

∫ T

0

tr[A(s)]ds

)

(d) Using part (c) show that µ1µ2 = 1 in the case of Mathieu’s equation for a parametric
oscillator:

ẍ+ (α+ β cos t)x = 0.

A3. Consider the van der Pol equation

ẍ+ x+ ε(x2 − 1)ẋ = Γcos(ωt), 0 < ε ≪ 1

with Γ = O(1) and ω 6= 1/3, 1, 3. Using the method of multiple scales show that the solution
is attracted to

x(t) =
Γ

1− ω2
cosωt+O(ε)

when Γ2 ≥ 2(1− ω2)2 and

x(t) = 2

[

1− Γ2

2(1− ω2)2

]1/2

cos t+
Γ

1− ω2
cosωt+O(ε)

when Γ2 < 2(1− ω2)2. Explain why this result breaks down when ω = 1/3, 1, 3.

A.4. (a) Give definitions for the following: invariant set, attracting set, ω-limit set.

(b) Use the Poincare’-Bendixson (PB) Theorem and the fact that the planar system

ẋ = x− y − x3, ẏ = x+ y − y3

has only the one critical point at the origin to show that this system has a periodic
orbit in the annular region A = {x ∈ R2 | 1 < |x| <

√
2}.

(c) Show that the system

ẋ = x− rx− ry + xy, ẏ = y − ry + rx− x2

can be written in polar coordinates as ṙ = r(1−r), θ̇ = r(1−cos θ). Show that it has an
unstable node at the origin and a saddle node at (1, 0). Use this information and the
PB Theorem to sketch the phase portrait and then deduce that for all (x, y) 6= (0, 0),
the flow φt(x, y) → (1, 0) as t → ∞ but that (1, 0) is not linearly stable.

A.5. The displacement x of a spring–mounted mass under the action of dry friction is assumed
to satisfy

mẍ+ kx = −F0sgn(ẋ)

An example would be a mass m connected to a fixed support by a spring of stiffness k and
resting on a surface with frictional force F0, F0 > 0. Set m = k = 1 for convenience and let
y = ẋ.
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(a) Consider the initial conditions x = x0 > 0, ẋ = 0 at t = 0. Show that the phase path
will spiral exactly n times before reaching equilibrium if

(4n− 1)F0 < x0 < (4n+ 1)F0.

(b) Suppose the initial conditions at t = 0 are x = x0 > 3F0 and ẋ = 0. Subsequently,
whenever x = −α, where 2F0 − x0 < −α < 0 and ẋ > 0, a trigger operates to increase
suddenly the forward velocity so that the kinetic energy increases by a constant amount
E. Show that if E > 8F 2

0 then a periodic motion is approached, and show that the
largest value of x in the periodic motion is equal to F0 + E/(4F0).

B. Partial Differential Equations. Do three problems to get full credit

Useful facts:

1. Green’s integral identity is
∫

Ω
(v∇2u− u∇2v)dx =

∫

∂Ω(vuν − uvν)dσ where uν refers to the
outward normal derivative.

2. The laplacian in polar coordinates is

∇2u =
1

r

∂

∂r
(r
∂u

∂r
) +

1

r2
∂2u

∂θ2
. (1)

B.1. Solve (and sketch the solution of) the differential equation ut + uux = 0 on the domain
−∞ < x < ∞, t > 0 subject to initial data u(x, 0) = u0(x) where

(a)

u0(x) =































0 x < 0

x 0 < x < 1

1 x > 1

. (2)

(b)

u0(x) =































1 x < 0

1− x 0 < x < 1

0 x > 1

. (3)

For which (if any) of these initial profiles does the solution of the problem ut + uux = ǫuxx,
ǫ > 0, converge to a traveling wave profile? What is the speed of the traveling wave solution?

B.2. (a) Does a solution of the equation ux+xuy = u with u(x, x2) = x exist for−∞ < x < ∞,
y > 0? Explain why or why not.

(b) Does a solution of the equation xux−yuy = u with u(x, x2) = x exist for −∞ < x < ∞,
y > 0? Explain why or why not.

B.3. Find the canonical form for the partial differential equation

x2uxx + 2xyuxy + y2uyy = xy2ux. (4)

What type of partial differential equation is this?
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B.4. Under what conditions on λ, if any, does a solution u(r, θ) of

∇2u = 1, (5)

on the annulus 1 < r < 2, with boundary conditions ur = cos θ at r = 1, and ur = λ cos2 θ
at r = 2? Find a solution when it exists. Is it unique?

B.5. The fundamental solution for the Laplacian in two dimensional space is G(x,y) = 1

2π ln(|x−
y|), where x = (x1, x2). What is the Green’s function for the Laplacian operator on the first
quadrant 0 < x1, x2 < ∞, subject to boundary conditions G(x1, 0) = 0, Gx1

(0, x2) = 0? Be
sure to verify the validity of your solution.
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