
PhD Preliminary Qualifying Examination:
Differential equations (6410/20)

August 2008

Instructions: Answer three questions from part A and three questions from

part B. Indicate clearly which questions you wish to be graded.

Part A.

1. Consider the linear non–autonomous first order system

ẋ = Ax + B(t)x, x ∈ Rn

with A non-singular and B(t) continuous for t ≥ 0. Further, assume that

• the eigenvalues of A have non–positive real parts and those with zero real part are

non-degenerate

•
∫

∞

0
||B(t)||dt = c1 with c1 a positive constant.

(a) Let Φ(t) be the fundamental matrix of the equation ẋ = Ax with Φ(0) = I. Derive

the variation of constants formula

x(t) = Φ(t)x(0) +

∫ t

0

Φ(t − s)B(s)x(s)ds

(b) Prove that the solution x(t) is bounded for all times t > 0. [Hint: Use part (a) and

Gronwall’s lemma in the following form: v(t) ≤ v0 +
∫ t
0

u(s)v(s)ds implies that v(t) ≤

v0 exp(
∫ t
0

u(s)ds) for t > 0]. What does this imply about the stability of the origin?

2. Consider the T–periodic non-autonomous linear differential equation

ẋ = A(t)x, x ∈ Rn, A(t) = A(t + T )

Let Φ(t) be a fundamental matrix with Φ(0) = I.

(a) Show that there exists at least one nontrivial solution χ(t) such that

χ(t + T ) = µχ(t)

where µ is an eigenvalue of Φ(T ).
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(b) Suppose that Φ(T ) has n distinct eigenvalues µi, i = 1, . . . , n. Show that there are

then n linearly independent solutions of the form

xi = pi(t)e
ρit

where the pi(t) are T–periodic. How is ρi related to µi?

(c) Consider the equation ẋ = f(t)A0x, x ∈ R2, with f(t) a scalar T–periodic function and

A0 a constant matrix with real distinct eigenvalues. Determine the corresponding Floquet

multipliers.

3. Consider the scalar equation

ẍ + ẋ = −ε(x2 − x), 0 < ε % 1

Using the method of multiple scales show that the O(1) solution is

x0(t, τ) = A(τ) + B(τ)e−t,

where τ = εt, and identify any resonant terms at O(ε). Show that the non–resonance

condition for the amplitude A is

Aτ = A − A2

and hence determine the asymptotic behavior of x0. Comment on the domain of validity

of the asymptotic expansion.

4. Consider the scalar differential equation

ẍ + x = −εf(x, ẋ)

with |ε| % 1. Let y = ẋ.

(a) Show that if E(x, y) = (x2 + y2)/2 then

Ė = −εf(x, y)y.

Hence show that an approximate periodic solution of the form x = A cos t +O(ε) exists if

∫ 2π

0

f(A cos t,−A sin t) sin tdt = 0.

(b) Let En = E(x(2πn), y(2πn)) with x(t) = An cos t + O(ε) for 2πn ≤ t < 2π(n + 1).

Show that to lowest order En satisfies a difference equation of the form

En+1 = En + εF (En)
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and write down F (En) explicitly as an integral. Hence deduce that a periodic orbit with

approximate amplitude A∗ =
√

2E∗ exists if F (E∗) = 0 and this orbit is stable if

ε
dF

dE
(E∗) < 0.

(c) Using the above result, find the approximate amplitude of the periodic orbit of the van

der Pol equation

ẍ + x + ε(x2 − 1)ẋ = 0

and verify that it is stable.

5. The displacement x of a spring–mounted mass under the action of dry friction is assumed

to satisfy

ẍ + x = F0sgn(v0 − ẋ)

(a) Calculate the phase paths in the (x, y) plane and draw the phase diagram. Deduce

that the system ultimately converges into a limit cycle oscillation. What happens when

v0 = 0?

(b) Suppose v0 = 0 and the initial conditons at t = 0 are x = x0 > 3F0 and ẋ = 0.

Subsequently, whenever x = −α, where 2F0 − x0 < −α < 0 and ẋ > 0, a trigger operates

to increase suddenly the forward velocity so that the kinetic energy increases by a constant

amount E. Show that if E > 8F 2
0 then a periodic motion is approached, and show that

the largest value of x in the periodic motion is equal to F0 + E/(4F0).
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Part B.

1. Consider the scalar linear equation

a
∂u

∂x
+ b

∂u

∂y
= αu

with a, b,α differentiable functions of x, y. Suppose that u is prescribed on some arc Γ

(Cauchy data).

(a) By introducing a test function ψ that vanishes on an arbitrary curve γ and applying

Green’s theorem to the domain D bounded by ∂D = Γ ∪ γ, derive the integral equation

for a weak solution to the Cauchy problem.

(b) Extend the analysis to the case where u is discontinuous across an open curve C0

within the domain D. Hence show that C0 is a characteristic projection.

(c) Write down the generalization of part (b) to the case of the quaslinear equation

∂P

∂x
+

∂Q

∂y
= c

where P,Q, c are differentiable functions of x, y, u, and hence derive the Rankine–Hugonoit

condition.

2. Paint flowing down a wall has thickness u(x, t) satisfying (for t > 0)

∂u

∂t
+ u2 ∂u

∂x
= 0.

(a) Show that the characteristics are straight lines and that the Rankine–Hugoniot condi-

tion on a shock x = S(t) is

dS

dt
=

[

u3/3
]+

−

[u]+
−

.

(b) A stripe of paint is applied at t = 0 so that

u(x, 0) =







0, x < 0 or x > 1

1, 0 < x < 1

For sufficiently small t, determine u in the domains x < 0, 0 < x < t, t < x < S(t) and

S(t) < x, where the shock is x = S(t) = 1 + t/3

(c) Explain why the solution changes at t = 3/2 and show that thereafter Ṡ = S/3t.
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3. (a) Consider the three–dimensional wave equation

∂2u

∂t2
= c2∇2u

with Cauchy data

u(x, 0) = 0,
∂u

∂t
(x, 0) = g(x)

(a) Show that radially symmetric solutions are in the form of outgoing and incoming waves

u(r, t) =
1

r
F (r ± ct).

[Hint: Perform the substitution v = ur].

(b) Writing the general solution to the Cauchy problem as a superposition of outgoing

waves

u(x, t) =

∫

R3

δ(r − ct)

r
f(x′, y′, z′)dx′dy′dz′,

where r2 = (x − x′)2 + (y − y′)2 + (z − z′)2, derive the retarded potential solution

u(x, t) = ct

∫ 2π

0

∫ π

0

f(x + ct sin θ cos φ, y + ct sin θ sinφ, z + ct cos θ) sin θdθdφ

and show that f = g/4πc.

(c) Assuming that the initial data g is only nonzero in a bounded domain D, use a graphical

construction to derive Huygen’s principle.

4. (a) Show that if the real symmetric matrix A has real eigenvalues λi and orthogonal

eigenvectors xi, then for any vector y =
∑

i cixi, the smallest eigenvalue satisfies

λ0 ≤
yT Ay

yT y
.

(b) Show that the eigenfunctions φ and eigenvalues −λ of the problem

∇2φ + λφ = 0 in a region D,

with
∂φ

∂n
+ αφ = 0 on ∂D,

where ∂/∂n is the outward normal derivative, satisfy

λ

∫

D

φ2dx =

∫

D

|∇φ|2dx + α

∫

∂D

φ2ds.

Assuming that the eigenfunctions φ form a complete orthonormal set, derive an upper

bound for the smallest eigenvalue in terms of an appropriate energy integral (Rayleigh

quotient).
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5. (a) Solve Poisson’s equation

∇2u = f in D, u = g on ∂D

in terms of an appropriately defined Green’s function.

(b) Show that the two–dimensional Green’s function for the Laplacian in an unbounded

domain is

G(x,x′) =
1

2π
ln |x − x′|.

(c) Use the method of images to derive the Green’s function for the Laplacian in the

half–space x ∈ R, y > 0 with a Dirichlet boundary condition on y = 0, and evaluate the

corresponding solution of part (a) when f = 0.
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