PhD Preliminary Qualifying Examination:
Differential equations (6410/20)
August 2008

Instructions: Answer three questions from part A and three questions from
part B. Indicate clearly which questions you wish to be graded.

Part A.

1. Consider the linear non—autonomous first order system
&t =Az+ B(t)zr, z€R"
with A non-singular and B(t) continuous for ¢ > 0. Further, assume that

e the eigenvalues of A have non—positive real parts and those with zero real part are

non-degenerate

o [;71|B(t)||dt = ¢1 with ¢; a positive constant.

(a) Let ®(t) be the fundamental matrix of the equation # = Ax with ®(0) = I. Derive

the variation of constants formula
t
z(t) = ®(t)z(0) + / O(t — s)B(s)x(s)ds
0

(b) Prove that the solution z(t) is bounded for all times ¢t > 0. [Hint: Use part (a) and
Gronwall’s lemma in the following form: v(t) < wvg + fot u(s)v(s)ds implies that v(t) <
vo exp( fg u(s)ds) for ¢t > 0]. What does this imply about the stability of the origin?

2. Consider the T—periodic non-autonomous linear differential equation
t=A(t)x, zeR", A(t)=At+T)

Let ®(t) be a fundamental matrix with ®(0) = I.

(a) Show that there exists at least one nontrivial solution x(¢) such that

x(t+T) = px(t)

where (1 is an eigenvalue of ®(7T).



(b) Suppose that ®(T") has n distinct eigenvalues p;, @ = 1,...,n. Show that there are

then n linearly independent solutions of the form
z; = pi(t)ert

where the p;(t) are T—periodic. How is p; related to ;7

(c) Consider the equation @ = f(t)Aopr, z € R?, with f(¢) a scalar T—periodic function and
Ag a constant matrix with real distinct eigenvalues. Determine the corresponding Floquet

multipliers.
. Consider the scalar equation
i+i=—e(2’—2), 0<exl1
Using the method of multiple scales show that the O(1) solution is
zo(t,7) = A(T) + B(1)e ™,

where 7 = ¢t, and identify any resonant terms at O(e). Show that the non-resonance
condition for the amplitude A is

A, = A— A

and hence determine the asymptotic behavior of xg. Comment on the domain of validity

of the asymptotic expansion.

. Consider the scalar differential equation
i+x=—cf(x,)

with |e] < 1. Let y = #.

(a) Show that if E(x,y) = (22 + y?)/2 then
E=—cf(z,y)y.

Hence show that an approximate periodic solution of the form x = Acost 4+ O(e) exists if

2T
f(Acost,—Asint)sintdt = 0.
0

(b) Let E,, = E(xz(2mn),y(2mn)) with z(t) = A, cost + O(e) for 2mn < t < 2mw(n + 1).

Show that to lowest order F, satisfies a difference equation of the form

Ent1 = En 4+ eF(E,)



and write down F(FE,) explicitly as an integral. Hence deduce that a periodic orbit with

approximate amplitude A* = 2E* exists if F(E*) = 0 and this orbit is stable if

dF , .

(c) Using the above result, find the approximate amplitude of the periodic orbit of the van
der Pol equation

itarte@® -1z =0
and verify that it is stable.

. The displacement x of a spring—mounted mass under the action of dry friction is assumed
to satisfy

I+ x = Fysgn(vg — 1)

(a) Calculate the phase paths in the (z,y) plane and draw the phase diagram. Deduce
that the system ultimately converges into a limit cycle oscillation. What happens when

U():O?

(b) Suppose vg = 0 and the initial conditons at ¢ = 0 are * = zo > 3Fy and & = 0.
Subsequently, whenever © = —a, where 2Fy — 29 < —a < 0 and & > 0, a trigger operates
to increase suddenly the forward velocity so that the kinetic energy increases by a constant
amount E. Show that if £ > 8F02 then a periodic motion is approached, and show that

the largest value of z in the periodic motion is equal to Fy + E/(4Fp).



Part B.

1. Consider the scalar linear equation

a&n ay—au

with a, b, differentiable functions of x,y. Suppose that u is prescribed on some arc I’

(Cauchy data).

(a) By introducing a test function ¢ that vanishes on an arbitrary curve v and applying
Green’s theorem to the domain D bounded by 0D = I' U ~, derive the integral equation

for a weak solution to the Cauchy problem.

(b) Extend the analysis to the case where u is discontinuous across an open curve Cj

within the domain D. Hence show that Cj is a characteristic projection.

(¢) Write down the generalization of part (b) to the case of the quaslinear equation
oP 0
or 0@ _ .
or Oy
where P, @, c are differentiable functions of z, y, v, and hence derive the Rankine-Hugonoit

condition.

2. Paint flowing down a wall has thickness u(z, t) satisfying (for ¢ > 0)

du  H0u

E—Fu &T_O'

(a) Show that the characteristics are straight lines and that the Rankine-Hugoniot condi-

tion on a shock x = S(t) is
as [/
dt — [u]t

(b) A stripe of paint is applied at ¢ = 0 so that

(2,0) 0, z<Oorz>1
u(zx,0) =
1, O<ax<l1

For sufficiently small ¢, determine u in the domains z < 0, 0 < z < ¢, t < & < S(t) and
S(t) < x, where the shock is z = S(t) =1+1t/3

(c) Explain why the solution changes at t = 3/2 and show that thereafter S = S/3t.



3. (a) Consider the three-dimensional wave equation

Pu 5
— =c"Vu
ot?

with Cauchy data

u(x,0) =0, %(X,O) = g(x)

(a) Show that radially symmetric solutions are in the form of outgoing and incoming waves
1
u(r,t) = —=F(r £ ct).
r

[Hint: Perform the substitution v = ur].

(b) Writing the general solution to the Cauchy problem as a superposition of outgoing

waves

u(x’t) — /Rl3 Mf(l;/, y,, Z,)dﬂj‘,dy/dz/7

r

where 72 = (x — 2')? + (y — v')%? + (2 — /)2, derive the retarded potential solution
2T pm
u(x,t) =ct / / f(x 4+ ctsinfcos g,y + ctsinfsin ¢, z + ct cos 0) sin 0dOd¢p
o Jo

and show that f = g/4wc.

(¢) Assuming that the initial data g is only nonzero in a bounded domain D, use a graphical

construction to derive Huygen’s principle.

4. (a) Show that if the real symmetric matrix A has real eigenvalues \; and orthogonal
eigenvectors x;, then for any vector y = >, ¢;x;, the smallest eigenvalue satisfies
y" Ay

Mo < .
yly

(b) Show that the eigenfunctions ¢ and eigenvalues —\ of the problem
V2¢ + \¢ =0 in a region D,

with

%—Fo@:OonaD,
on

where 0/0n is the outward normal derivative, satisfy

A/D¢2dx=/D\v¢y2dx+a/aD¢2ds.

Assuming that the eigenfunctions ¢ form a complete orthonormal set, derive an upper
bound for the smallest eigenvalue in terms of an appropriate energy integral (Rayleigh

quotient).



5. (a) Solve Poisson’s equation
V2u=fin D, u=gon dD

in terms of an appropriately defined Green’s function.

(b) Show that the two-dimensional Green’s function for the Laplacian in an unbounded
domain is

1
G(x,x') = 2—ln]x —x/|.
77

(c¢) Use the method of images to derive the Green’s function for the Laplacian in the
half-space x € R,y > 0 with a Dirichlet boundary condition on y = 0, and evaluate the

corresponding solution of part (a) when f = 0.



