
UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination in Differential Equations

January 6, 2012.

Instructions: The examination has two parts consisting of six problems in Part A

and five in Part B. You are to work three problems from part A

and three problems from part B. If you work more than the required

number of problems, then state which problems you wish to be graded,

otherwise the first three will be graded.

In order to receive maximum credit, solutions to problems must

be clearly and carefully presented and should be as detailed as

possible. All problems are worth 20 points. A passing score is 72.

A. Ordinary differential Equations: Do three problems for full credit

A1. Let f(t, x) be continuous function on R× Rn that satisfies

‖f(t, x1)− f(t, x2)‖ ≤ ‖x2 − x1‖

for all t ∈ R and x1, x2 ∈ Rn. Let x0 ∈ Rn be a point. Show that there is and ε > 0 and a
unique function y ∈ C1([0, ε],Rn) that satisfies the initial value problem

dx

dt
= f(x, t),

x(0) = x0.

A2. Suppose A(t) is a real n × n matrix function which is smooth in t and periodic of period
T > 0. Consider the linear differential equation in Rn

dx

dt
= A(t)x,

x(0) = x0.
(1)

Let Φ(t) be the fundamental matrix solution with Φ(0) = I.

(a) Define: Floquet Matrix, Floquet Multiplier and Floquet Exponent. How are these re-
lated to Φ(t)? State the necessary and sufficient conditions so that (1) has a nonzero
T -periodic solution.

(b) Prove that the zero solution is unstable for the system ẋ = A(t)x, where

A(t) =

 1
2 − cos t 9.11

2001 3
2 + sin t

 .

A3. Let A be an n × n real matrix whose eigenvalues λi satisfy <eλi < 0 for all i = 1, . . . , n.
Consider the initial value problem for x0 ∈ Rn,

dx

dt
= Ax+

t‖x‖3

1 + t
v,

x(0) = x0

(2)

where v ∈ Rn is a unit vector.
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(a) Show that if |x0| is small enough, there is a bounded solution to (2) that exists for all
time.

[Hint: Suppose g(t) and u(t) are nonnegative functions and c0 ≥ 0 is a constant that

satisfy u(t) ≤ c0 +
∫ t

0
g(s)u(s) ds for all t ≥ 0. Then Gronwall’s Inequality implies

u(t) ≤ c0 exp
(∫ t

0
g(s) ds

)
for all t ≥ 0. ]

(b) Let z(t) = 0 for all t be the zero solution to (2) . Define what it means for z to be
Lyapunov Stable (some authors call this notion stable .) Show that z is Lyapunov
stable for this equation.

A4. Consider Griffith’s model for a genetic control system, where x and y are proportional to
concentration of protein and the messenger RNA from which it is translated, respectively,
and µ > 0 is a rate constant

ẋ = y − µx

ẏ =
x2

1 + x2
− y.

(a) Show that the system has three fixed points when µ < µc and one when µ > µcwhere
µc is to be determined.

(b) What is the nature of the bifurcation at µ = µc?

A5. Consider a Brusselator system for chemical reactants x, y given by

ẋ = 1− 4x+ x2y,

ẏ = 3x− x2y

(a) Show that the quadrilateral bounded by the lines x = 0, y = 0, y = 8+x and y = 10−x
is a forward invariant subset.

(b) Find the fixed points and determine their stability.

(c) Show that the system has at least one nonconstant periodic solution.

A6. (a) State the Center Manifold Theorem for rest points. Briefly explain its importance in
bifurcation theory.

(b) Construct an approximation to the center manifold at the origin and use it to determine
the local behavior of solutions.

ẋ = −xy,
ẏ = −y + x2 − 2y2.

B. Partial Differential Equations. Do three problems to get full credit.

B1. Consider the first-order equation

u = x1ux1 + x2ux2 +
1

2
(u2x1

+ u2x2
),

for the function u(x1, x2).

(a) Write down the characteristic equations

ṗ = −DxF −DzFp,

ż = DpF · p,
ẋ = DpF,

associated with this problem.
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(b) Verify that the Cauchy data u(x1, 0) = 1
2 (1 − x21), x1 ∈ R, is noncharacteristic, and

find an admissible set of initial conditions.

(c) Find a solution u(x1, x2) to the original equation which satisfies the given Cauchy
data.

B2. In Kirchhoff-Love Plate Theory, the vertical displacement w(x) of an isotropic static plate
under pure bending satisfies

Lw := D

(
∂4w

∂x41
+ 2

∂4w

∂x21∂x
2
2

+
∂4w

∂x42

)
= −f,

where D > 0 is a known constant bending stiffness, and −f(x) is a given applied transverse
load. Assume that the plate lies within a simply connected bounded region U ⊂ R2 with
smooth boundary ∂U . Define the bilinear form

B(w, v) =

∫
U

(Lw)v dx.

(a) Suppose that the boundary of the plate is clamped, that is, the displacement w satisfies

w = 0, on ∂U,

∂w

∂η
= 0, on ∂U,

where η is the unit outward normal. Let X be the space of smooth functions satisfying
the above boundary conditions. Show that B is symmetric and positive semidefinite
over X ×X.

(b) Using an elementary estimate for solutions of Poisson’s equation, show that B is
bounded and coercive over X ×X in a well-chosen norm.

(c) By extending X appropriately, use the Lax-Milgram Theorem to prove that the bound-
ary value problem above admits a unique weak solution for all sufficiently smooth f .

B3. Let U ⊂ Rn be a bounded open set with smooth boundary ∂U , and consider the problem
−4u+ c(x)u = λu+ f, in U,

u = 0, on ∂U,

where c(x) ∈ L∞(U), and f ∈ C∞
0 (∂U).

(a) In the case f = 0, by examining the bilinear form over H1
0 (U) associated with the

operator −4 + c − λ, determine a general condition on λ ∈ R which guarantees that
u = 0 is the only weak solution of the problem.

(b) Still assuming f = 0, suppose that λ = λ1, λ2 have been chosen such that there exist
nonzero weak solutions u1, u2 ∈ H1

0 (U) respectively (that is, (λ1, u1) and (λ2, u2) are
eigenpairs). Prove that λj must be real, and if λ1 6= λ2, then u1 and u2 are orthogonal.

(c) Suppose λ1 is an eigenvalue as in part (b), and let E1 ⊂ H1
0 (U) be the set of all

associated eigenfunctions. Setting λ = λ1, for general f ∈ C∞
0 (U), find the least

restrictive constraint on f which guarantees a weak solution to the problem exists. Is
the solution unique?
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B4. Let U ⊂ Rn be an open bounded connected set with smooth boundary ∂U . Consider the
initial boundary-value problem for the heat equation:

ut −4u = 0, in U × (0, T ]

u = 0, on ∂U × [0, T ]

u = g, on U × {t = 0}.

(a) Use the mean value property for the heat equation

u(x, t) =
1

4rn

∫ ∫
E(x,t;r)

u(y, s)
|x− y|2

(t− s)2
dyds,

where E(x, t; r) = {(y, s) ∈ Rn+1 : s ≤ t, φ(x − y, t − s) ≥ 1/rn} and φ(x, t) is the
fundamental solution of the heat equation, to prove the strong maximum principle for
the heat equation.

(b) Show that the strong maximum principle implies the principle of infinite propagation
speed for the problem above.

B5. Assume that u ∈ C2(Rn × [0,∞]) satisfies the initial value problem for the wave equation
utt −4u = 0, in Rn × (0,∞)

u = g, ut = h, on Rn × {t = 0}.

Recall that when n = 3, using spherical means and the Euler-Poisson-Darboux equation,
one can derive Kirchhoff’s formula

u(x, t) =
∂

∂t

(
t−
∫
∂B(x,t)

g dS

)
+ t−
∫
∂B(x,t)

h dS

= −
∫
∂B(x,t)

th(y) + g(y) +Dg(y) · (y − x) dS(y), t > 0.

(a) Outline the procedure (the “method of descent”) for deriving a similar formula (Pois-
son’s formula) for the initial value problem in the case n = 2.

(b) Explain how a disturbance originating at a point x ∈ R2 at time t = 0 propagates in
relation to the cone C = {(y, t) : t > 0, |x − y| < t}. In particular, using the Kirch-
hoff and Poisson formulas, show that there is a qualitative difference in propagation
behavior between the cases n = 2 and n = 3.
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