
Preliminary Examination, Numerical Analysis, January 2010

Instructions: This exam is closed books and notes. The time allowed is three
hours and you need to work on any three out of questions 1-5 and any two
out of questions 6-8. All questions have equal weights and the passing score
will be determined after all the exams are graded. Indicate clearly the work
that you wish to be graded.

Note: In problems 6-8, the notations k = ∆t and h = ∆x are used. Note also
that at the end of the exam there is a list of Facts some of which may be useful
to you.

1. Matrix Factorizations:
(a) Prove any two of the following statements:

(i) Schur Decomposition: Any matrix A ∈ Cm×m can be factored as A = Q∗TQ, where
Q is unitary and T is upper triangular.

(ii) Singular Value Decomposition: Any matrix A ∈ Cm×n can be factored as A =
UΣV ∗, where U ∈ Cm×m and V ∈ Cn×n are unitary and Σ ∈ Rm×n is a rectangular
matrix whose only nonzero entries are non-negative entries on its diagonal.

(iii) QR Factorization: Any full-rank matrix A ∈ Rm×n for m ≥ n can be factored
A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is upper triangular with positive
diagonal entries.

b) Discuss situations in which each of these factorizations is useful in numerical analysis
and explain why the factorizations are useful in those situations.
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2) Least Squares Problems

a) For a full rank real m × n matrix A, show that X = A†, the pseudoinverse of A,
minimizes ‖AX − I‖F over all n × m matrices X. What is the value of the minimum?
(Hint: Relate the problem to a set of least-squares problems).

b) For a real full rank m × n matrix A and vector b ∈ Rm, explain how to solve the
least-squares problem of finding x ∈ Rn that minimizes ‖Ax − b‖2 using i) the normal
equations, and b) a QR factorization of the matrix A. What are the advantages and
disadvantages of each of these methods?
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3) Iterative Methods for Linear Systems

Consider the boundary value problem

−u′′(x) + βu(x) = f(x), for 0 ≤ x ≤ 1

where β > 0, and with u(0) = u(1) = 0, and the following discretization of it:

−Uj−1 + (2 + βh2) Uj − Uj+1 = Fj

for j = 1, 2, . . . , N − 1 where Nh = 1, Fj ≡ h2 f(jh), and U0 = UN = 0.

Analyze the convergence properties of the Jacobi iterative method for this problem. In
particular, express the speed of convergence as a function of the discretization stepsize
h. How does the number of iterations required to reduce the initial error by a factor δ
depend on h? In practice, would you use this method to solve the given problem? If so,
explain why this is a good idea? If not, how would you solve it in practice?
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4) Interpolation and Integration:

a) Consider equally spaced points xj = a + jh, j = 0, . . . , n on the interval [a, b], where
nh = b − a. Let f(x) be a smooth function defined on [a, b]. Show that there is a unique
polynomial p(x) of degree n + 1 which interpolates f at all of the points xj . Derive the
formula for the interpolation error at an arbitrary point x in the interval [a, b]:

f(x) − p(x) ≡ E(x) =
1

(n + 1)!
(x − x0)(x − x1) · · · (x − xn)fn+1(η).

for some η ∈ [a, b].

b) Let In(f) denote the result of using the composite Trapezoidal rule to approximate

I(f) ≡
∫ b

a f(x)dx using n equally sized subintervals of length h = (b − a)/n. It can be
shown that the integration error En(f) ≡ I(f) − In(f) satisfies

En(f) = d2h
2 + d4h

4 + d6h
6 + . . .

where d2, d4, d6, . . . are numbers that depend only on the values of f and its derivatives
at a and b. Suppose you have a black-box program that, given f , a, b, and n, calculates
In(f). Show how to use this program to obtain an O(h4) approximation and an O(h6)
approximation to I(f).
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5) Sensitivity:
Consider a 6 × 6 symmetric positive definite matrix A with singular values σ1 = 1000,
σ2 = 500, σ3 = 300, σ4 = 20, σ5 = 1, σ6 = 0.01.
a) Suppose you use a Cholesky factorization package on a computer with a machine ep-
silon 10−14 to solve the system Ax = b for some nonzero vector b. How many digits of
accuracy do you expect in the computed solution? Justify your answer in terms of con-
dition and stability. You may assume that the entries of A and b are exactly represented
in the computer’s floating-point system.

b) Suppose that instead you use an iterative method to find an approximate solution to
Ax = b and you stop iterating and accept iterate x(k) when the residual r(k) = Ax(k) − b
has 2-norm less than 10−9. Give an estimate of the maximum size of the relative error in
the final iterate? Justify your answer.
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6) Elliptic Problems:

Consider the standard five-point difference approximation (centered difference for both
the gradient and divergence operators) for the variable coefficient Poisson equation

−∇ · (a∇v) = f

with Dirichlet boundary conditions, in a two-dimensional rectangular region. We assume
that a(x, y) ≥ a0 > 0. The approximate solution {ui,j} satisfies a linear system Au = b.

1. State and prove the maximum principle for the numerical solution ui,j.

2. Derive the matrix A in the one-dimensional case and show that it is symmetric and
positive definite.

3. For the one-dimensional and constant-coefficient case, show that the global error
ej = v(xj) − uj satisfies ‖e‖2 = O(h2) as the space step h → 0.

4. Discuss the advantages and disadvantages of trying to solve the system for the two-
dimensional problem using (i) the SOR (Successive Over Relaxation) method and
(ii) the (preconditioned) Conjugate Gradient method.
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7) Heat Equation Stability:

a) Consider the initial value problem for the constant-coefficient diffusion equation

vt = βvxx, t > 0

with initial data v(x, 0) = f(x). A scheme for this problem is:

un+1
j − un

j

k
=

β

h2

{

un+1
j−1 − 2un+1

j + un+1
j+1

}

.

Analyze the 2-norm stability of this scheme. For which values of k > 0 and h > 0 is the
scheme stable? (Note that this there are no boundary conditions here.)

b) Consider the variable coefficient diffusion equation

vt = (βvx)x, 0 < x < 1, t > 0

with Dirichlet boundary conditions

v(0, t) = 0, v(1, t) = 0

and initial data v(x, 0) = f(x). Assume that β(x) ≥ β0 > 0, and that β(x) is smooth.
Let βj+1/2 = β(xj+1/2). A scheme for this problem is:

un+1
j − un

j

k
=

1

h2

{

βj−1/2u
n+1
j−1 − (βj−1/2 + βj+1/2)u

n+1
j + βj+1/2u

n+1
j+1

}

.

Analyze the 2-norm stability of this scheme for solving this initial boundary value problem.
DO NOT NEGLECT THE FACT THAT THERE ARE BOUNDARY CONDITIONS!
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8) Numerical Methods for ODEs: Consider the Linear Multistep Method

yn+2 −
4

3
yn+1 +

1

3
yn =

2

3
kfn+2

for solving an initial value problem y′ = f(y, x), y(0) = η. You may assume that f is
Lipschitz continuous with respect to y uniformly for all x.

a) Analyze the consistency, stability, accuracy, and convergence properties of this method.

b) Sketch a graph of the solution to the following initial value problem.

y′ = −108[y − cos(x)] − sin(x), y(0) = 2.

Would it be more reasonable to use this method or Euler’s method for this problem?
What would you consider in choosing a timestep k for each of the methods? Justify your
answer.
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Fact 1: A real symmetric n×n matrix A can be diagonalized by an orthogonal similarity
transformation, and A’s eigenvalues are real.

Fact 2: The (N − 1) × (N − 1) matrix M defined by

[ -2 1 0 0 0 . . . 0 0 0 0 ]

[ 1 -2 1 0 0 . . . 0 0 0 0 ]

[ 0 1 -2 1 0 . . . 0 0 0 0 ]

[ 0 0 1 -2 1 . . . 0 0 0 0 ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ 0 0 0 0 0 . . . 1 -2 1 0 ]

[ 0 0 0 0 0 . . . 0 1 -2 1 ]

[ 0 0 0 0 0 . . . 0 0 1 -2 ]

has eigenvalues µl = − 4 sin2( πl
2N ), l = 1, 2, . . . , N − 1.

Fact 3: The (N + 1) × (N + 1) matrix:

[ -1 1 0 0 0 . . . 0 0 0 0 ]

[ 1 -2 1 0 0 . . . 0 0 0 0 ]

[ 0 1 -2 1 0 . . . 0 0 0 0 ]

[ 0 0 1 -2 1 . . . 0 0 0 0 ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ . . . . . . . . . . . . ]

[ 0 0 0 0 0 . . . 1 -2 1 0 ]

[ 0 0 0 0 0 . . . 0 1 -2 1 ]

[ 0 0 0 0 0 . . . 0 0 1 -1 ]

has eigenvalues µl = −4 sin2
(

πl
2(N+1)

)

, l = 0, 1, . . . , N.

Fact 4: For a real n× n matrix A, the Rayleigh quotient of a vector x ∈ Rn is the scalar

r(x) =
xT Ax

xT x
.

The gradient of r(x) is

∇r(x) =
2

xT x
(Ax − r(x)x).

If x is an eigenvector of A then r(x) is the corresponding eigenvalue and ∇r(x) = 0.
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