			В	KAIN	TEA	SERS				
1.	each t	Fibonacci serm afte n digits i ibonacci	rwards is the la	is the su ast to ap	ım of it	s two pr	edecess	ors. Wh	ich one	of
	(A)	0	(B)	4	(C)	6	(D)	7	(E)	9
2.	Consi	der the s	sequenc	e						
				1, -2	2, 3, -4,	$5, -6, \dots$				
	What is the average of the first 200 terms of the sequence?									

3. Find the sum of all prime numbers between 1 and 100 that are simul-

$$(A)$$
 118 (B) 147 (C) 158 (D) 187 (E) 245

(C)

0

(D)

0.5

(E)

1

4. Prove that the following polynomial has no integral roots:

-0.5

(B)

taneously 1 modulo 4 and -1 modulo 5.

(B)

44

(A)

(A)

43

- 1

$$x^{8} - 16x^{7} + 4x^{6} + 13x^{5} - 7x^{4} + 9x^{3} - 2x^{2} - 4x + 9$$

5. In the magic square below, the sums of the numbers in each row, column and diagonal are the same. Find y + z.

18	\boldsymbol{x}	y						
18 25	z	21						
			,					
	(C)	4	15	(D)	46	(.	E)	47

6. Find the least positive integer n such that no matter how 10^n is expressed as the product of two positive integers, at least one of these two integers contains the digit 0.

7.	A positive integer is a <i>palindrome</i> if it can be read equivalently from right to left or from left to right (e.g. 505). The year 1991 is the only year in the last century that has the following two properties:it is palindrome, and it factors as a product of a 2 digit prime palindrome and a 3 digit prime palindrome. How many years in the last millennium (1000 to 2000) had the same two properties?									
	(A)	1	(B)	$\frac{1}{2}$	(C)	3	(D)	4	(E)	5
			BR	RAIN	SQUE	EEZEF	RS			
1.	Given	$0 \le x_0$	0 < 1, let							
					$x_n = 2$	x_{n-1}				
	if $2x_n$	$_{-1} < 1,$		x	$x_n = 2x_n$	$_{n-1}-1$				
	if $2x_n$	$_{-1} \ge 1.$								
	For ho	ow mar	x_0 is i	t true t	hat $x_0 =$	$= x_5$?				
	(A)	0	(B)	1	(C)	5	(D)	31	(E)	infinitely many
2.	If x, y	and z	are posi	tive nur	nbers sa	tisfying				
					$x + \frac{1}{y}$	= 4				
					$y + \frac{1}{z}$	= 1				
					$z + \frac{1}{x}$	$=\frac{7}{3}$				
	then a	xyz =								
	(A)	$\frac{2}{3}$	(B)	1	(C)	$\frac{4}{3}$	(D)	2	(E)	$\frac{7}{3}$
3.	There	exist	positive	integer	s A, B	and C ,	with n	o comm	on fact	or

greater than 1, such that $Alog_{200}5 + Blog_{200}2 = C.$

What is A + B + C?

(A) 4 (B) 6 (C) 8 (D) 10 (E) 12

- 4. Find the sum of all positive integers n for which $n^2 19n + 99$ is a perfect square.
- 5. If x and y are nonzero real numbers such that

$$|x| + y = 3$$

and

$$|x|y+x^3=0$$

then the integer nearest to x - y is

$$(A)$$
 -3 (B) -1 (C) 2 (D) 3 (E) 5

6. If x, y > 0, $log_y x + log_x y = 10/3$ and xy = 144, then

$$\frac{x+y}{2} =$$
(A) $12\sqrt{2}$ (B) $13\sqrt{3}$ (C) 24 (D) 30 (E) 36

BRAIN SQUISHERS

1. Prove that the equation

$$x^4 + y^4 + z^4 - 2y^2z^2 - 2z^2x^2 - 2x^2y^2 = 24$$

has no integral solutions.

2. Let f(x) be a continuous function on [0, a], such that f(x) + f(a - x) does not vanish on [0, a]. Evaluate the integral

$$\int_0^a \frac{f(x)}{f(x) + f(a-x)} dx.$$