BERKELEY MATH CIRCLE 1998-99 # Inversion in the Plane. Part I Zvezdelina Stankova-Frenkel UC Berkeley *Note:* All objects lie in the plane, unless otherwise specified. The expression "object A touches object B" refers to tangent objects, e.g. lines and circles. ## 1. Definition of Inversion in the Plane **Definition 1.** Let k(O, r) be a circle with center O and radius r. Consider a function on the plane, $I: \mathbb{R}^2 \to \mathbb{R}^2$, sending a point $X \not\equiv O$ to the point on the half line OX^{\to} , X_1 , defined by $$OX \cdot OX_1 = r^2$$. Such a function I is called an *inversion of the plane* with center O and radius r (write I(O, r).) FIGURES 1-2. It is immediate that I is not defined at p.O. But if we compactify \mathbb{R}^2 to a sphere by adding one extra point O_{∞} , we could define $I(O) = O_{\infty}$ and $I(O_{\infty}) = O$. An inversion of the plane can be equivalently described as follows (cf. Fig.1.) If $X \in k$, then I(X) = X. If X lies outside k, draw a tangent from X to k and let X_2 be the point of tangency. Drop a perpendicular X_2X_1 towards the segment OX with $X_1 \in OX$, and set $I(X) = X_1$. The case when X is inside k, $X \not\equiv O$, is treated in a reverse manner: erect a perpendicular XX_2 to OX, with $X_2 \in k$, draw the tangent to k at point X_2 and let X_1 be the intersection of this tangent with the line OX; we set $I(X) = X_1$. #### 2. Properties of Inversion Some of the basic properties of a plane inversion I(O, r) are summarized below: - I^2 is the identity on the plane. - If $A \not\equiv B$, and $I(A) = A_1, I(B) = B_1$, then $\triangle OAB \sim \triangle OB_1A_1$ (cf. Fig. 2.) Consequently, $$A_1B_1 = \frac{AB \cdot r^2}{OA \cdot OB}.$$ - If l is a line with $O \in l$, then I(l) = l. - If l is a line with $O \notin l$, then I(l) is a circle k_1 with diameter OM_1 , where $M_1 = I(M)$ for the orthogonal projection M of O onto l (cf. Fig.3.) FIGURES 3-4. - If k_1 is a circle through O, then $I(k_1)$ is a line l: reverse the previous construction. - If $k_1(O_1, r_1)$ is a circle not passing through O, then $I(k_1)$ is a circle k_2 defined as follows: let A and B be the points of intersection of the line OO_1 with k_1 , and let $A_1 = I(A)$ and $B_1 = I(B)$; then k_2 is the circle with diameter A_1B_1 . Note that the center O_1 of k_1 does not map to the center O_2 of k_2 (cf. Fig.4.) Note that two circles are perpendicular if their tangents at a point of intersection are perpendicular; following the same rule, a line and a circle will be perpendicular if the line passes through the center of the circle. In general, the angle between a line and a circle is the angle between the line and the tangent to the circle at a point of intersection with the line. \bullet Inversion preserves angles between figures: let F_1 and F_2 be two figures (lines, circles); then $$\angle(F_1, F_2) = \angle(I(F_1), I(F_2)).$$ #### 3. Problems **Problem 1.** Given a point A and two circles k_1 and k_2 , construct a third circle k_3 so that k_3 passes through A and is tangent to k_1 and k_2 . (cf. Fig.5) **Problem 2.** Given two points A and B and a circle k_1 , construct another circle k_2 so that k_2 passes through A and is tangent to k_1 . (cf. Fig.6) **Problem 3.** Given circles k_1, k_2 and k_3 , construct another circle k which tangent to all three of them. FIGURES 5-7. **Problem 4.** Let k be a circle, and let A and B be points on k. Let s and q be any two circles tangent to k at A and B, respectively, and tangent to each other at M. Find the set traversed by the point M as s and q move in the plane and still satisfy the above conditions. (cf. Fig.7) **Problem 5.** Circles k_1, k_2, k_3 and k_4 are positioned in such a way that k_1 is tangent to k_2 at point A, k_2 is tangent to k_3 at point B, k_3 is tangent to k_4 at point C, and k_4 is tangent to k_1 at point D. Show that A, B, C and D are either collinear or concyclic. (cf. Fig.8) **Problem 6.** Circles k_1, k_2, k_3 and k_4 intersect cyclicly pairwise in points $\{A_1, A_2\}, \{B_1, B_2\}, \{C_1, C_2\},$ and $\{D_1, D_2\}.$ $\{k_1 \text{ and } k_2 \text{ intersect in } A_1 \text{ and } A_2, k_2 \text{ and } k_3 \text{ intersect in } B_1 \text{ and } B_2, \text{ etc.} \}$ (cf. Fig.9) - Prove that if A_1, B_1, C_1, D_1 are collinear (concyclic), then A_2, B_2, C_2, D_2 are also collinear (concyclic). - Prove that if A_1, A_2, C_1, C_2 are concyclic, then B_1, B_2, D_1, D_2 are also concyclic. **Problem 7.** [Ptolemy's Theorem] Let ABCD be inscribed in a circle k. (cf. Fig.10) Prove that the sum of the products of the opposite sides equals the product of the diagonals of ABCD: $$AB \cdot DC + AD \cdot BC = AC \cdot BD$$. Further, prove that for any four points A, B, C, D: $$AB \cdot DC + AD \cdot BC > AC \cdot BD$$. When is equality achieved? **Problem 8.** Let k_1 and k_2 be two circles, and let P be a point. Construct a circle k_0 through P so that $\angle(k_1, k_0) = \alpha$ and $\angle(k_1, k_0) = \beta$ for some given angles $\alpha, \beta \in [0, \pi)$. **Problem 9.** Given three angles $\alpha_1, \alpha_2, \alpha_3 \in [0, \pi)$ and three circles k_1, k_2, k_3 , two of which do not intersect, construct a fourth circle k so that $\angle(k, k_i) = \alpha_i$ for i = 1, 2, 3. **Problem 10.** Construct a circle k^* so that it goes through a given point P, touches a given line l, and intersects a given circle k at a right angle. **Problem 11.** Construct a circle k which goes through a point P, and intersects given circles k_1 and k_2 at angles 45° and 60°, respectively. **Problem 12.** Let ABCD and $A_1B_1C_1D_1$ be two squares oriented in the same direction. Prove that AA_1 , BB_1 and CC_1 are concurrent if $D \equiv D_1$. **Problem 13.** Let ABCD be a quadrilateral, and let k_1, k_2 , and k_3 be the circles circumscribed around $\triangle DAC$, $\triangle DCB$, and $\triangle DBA$, respectively. Prove that if $AB \cdot CD = AD \cdot BC$, then k_2 and k_3 intersect k_1 at the same angle. **Problem 14.** In the quadrilateral ABCD, set $\angle A + \angle C = \beta$. - If $\beta = 90^{\circ}$, prove that that $(AB \cdot CD)^2 + (BC \cdot AD)^2 = (AC \cdot BD)^2$. - If $\beta = 60^{\circ}$, prove that $(AB \cdot CD)^2 + (BC \cdot AD)^2 = (AC \cdot BD)^2 + AB \cdot BC \cdot CD \cdot DA$. **Problem 15.** Let k_1 and k_2 be two circles intersecting at A and B. Let t_1 and t_2 be the tangents to k_1 and k_2 at point A, and let $t_1 \cap k_2 = \{A, C\}$, $t_2 \cap k_1 = \{A, D\}$. If $E \in AB^{\rightarrow}$ such that AE = 2AB, prove that ACED is concyclic. (cf. Fig.11) FIGURES 11-14. **Problem 16.** Let OL be the inner bisector of $\angle POQ$. A circle k passes through O and $k \cap OP^{\rightarrow} = \{A\}, k \cap OQ^{\rightarrow} = \{B\}, k \cap OL^{\rightarrow} = \{C\}.$ (cf. Fig.12) Prove that, as k changes, the following ratio remains constant: $$\frac{OA + OB}{OC}$$. **Problem 17.** Let a circle k^* be inside a circle k, $k^* \cap k = \emptyset$. We know that there exists a sequence of circles $k_0, k_1, ..., k_n$ such that k_i touches k, k^* and k_{i-1} for i = 1, 2, ..., n+1 (here $k_{n+1} = k_0$.) Show that, instead of k_1 , one can start with any circle k'_1 tangent to both k and k^* , and still be able to fit a "ring" of n circles as above. What is n is terms of the radii of and the distance between the centers of k and k^* ? (cf. Fig. 13) **Problem 18.** Circles k_1, k_2, k_3 touch pairwise, and all touch a line l. A fourth circle k touches k_1, k_2, k_3 , so that $k \cap l = \emptyset$. Find the distance from the center of k to l given that radius of k is 1. (cf. Fig. 14)