THE MAGIC OF NUMBERS

FLORIAN ENESCU

1. INTRODUCTION

The world of numbers has captured the imagination of many peo-
ple since ancient times. This talk will present some of the elementary
properties of numbers together with some of their classical and fasci-
nating aspects. We hope to give a glimpse of this beautiful world by
studying basic and, apparently, simple questions about integers. We
will see that some of the questions can be answered with elementary
techniques, some will prove to be more difficult, while for some an an-
swer is not yet known. However, all these questions share an intrinsic
beauty. More significantly, they also lead to important applications to
our everyday life, such as cryptography.

We will start with a few simple questions that can be answered with
a little work:

Definition 1.1. A positive integer is called a perfect square if it can
be written as the square of an integer.

Question 1.2. Which of the following numbers are perfect squares?
15, 34,64, 324,7897,16757894327, 625

Definition 1.3. A positive integer p > 1 is prime if the only positive
divisors of p are 1 and p. If p is not prime, then it is said to be
composite.

Question 1.4. Which of the following numbers are prime?
67,34,59,881,134571

Question 1.5. Assume you have two coins. Coin A values 3 cents and
coin B values 5 cents. Is it true that you can pay out any large enough
amount of money by using only coins of types A and B? How about if
the coins have values equal to 5 and respectively 77

2. PRIME NUMBERS, DIVISIBILITY

One of the very first things that we learn when we play with numbers
is how to divide one number by another. This fact is summarized in

the following result, which is assumed familiar to the reader.
1
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Theorem 2.1. Given two integers a and b with b # 0, there exists
unique integers q and r such that

a=>bq+r

and 0 < r < |b|. (The number q is called the quotient of the division of
a by b, while r is the remainder.)

Let us discuss the representation of any number n in base 10. Divide
n by 10: n = ¢q10 + ro with ¢g unique such that it is positive and less
than 10. Divide ¢ by 10: ¢ = 10¢q; + 71, where again r; is unique with
0 <7 <10. So, n = 10%¢; + 107, + ro. Continue the procedure until
you can write

n =10 + 105 tre_y + - + 107 + 7

with 0 < r; < 10. This representation is unique because at each step
the remainder is unique. It should be kept in mind that the way we
write numbers on paper is really only their representation in base 10.
They might have different representations in other bases. For example,
write 101 in base 2.

Problem 2.2. Prove that any number is divisible by 9 if the sum of
its digits (of its representation in base 10) is divisible by 9.

Proof. Write n in base 10:
n=10%r, +10F 1ry 1 4+ - -+ 10r, + 1o.

But 10 = 9 + 1, and so, for every h positive integer, 10" is of the
form 9’ + 1, where A’ is some integer. Therefore, n = 9s+ry+---+rg
and hence 9|n if and only if 9|ry + - - - 7o which is the statement of the

problem.
O

We can see that in the proof given above that it is important that
10" equals 1 plus a certain multiple of 9, but the value of the multiple
is not important. This is the same as thinking that 10 equals 1 as far
as we are concerned with the divisibility by 9. Let us express this in a
correct mathematical way.

Definition 2.3. Let n a positive integer. We say that a is congruent
to b modulo n if and only if n|a — b. We will write this a = b (mod n).

So, modulo 9 there are really only nine numbers: 0,1,2,3,4,5,6,7,8.
Also, modulo 2 there are only two numbers: 0, 1 which is the same as
saying that a number is either even or odd. Our clocks use numbers
modulo 12.
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One can check that a perfect square is congruent to 0,1,4,5,6,9
modulo 10. Hence, Question 1.2 can be answered easily now as the
numbers that have the last digit equal to 7 cannot be perfect squares.

Let us move on to a simple and natural question. How do we check
that a number is prime? If the number is large then the definition
of prime numbers seems to saying that we need to check that all the
numbers from 2 up to p — 1 do not divide p.

Proposition 2.4. A number p > 0 is prime if and only if it is not
divisible by any prime q, 1 < g < /p.

Proof. If p is not prime then there is a prime p’ that divides p: p =
p' - a. But then either p’ < \/p or a < (/p. Assume that a < /p,
since otherwise we are done, and repeat the procedure. It follows that,
eventually, there is a prime ¢ < ,/p such that ¢|p. O

This criterion is indeed useful: one can show that 881 by checking
that the prime numbers up to 30 do not divide 881 (the prime numbers
less than 30 are 2, 3,5,7,11,13,17,19,23,29.) This way we can also
answer Question 1.4.

Definition 2.5. Let a and b two positive integers. The largest number
d that divides both of them is called their greatest common divisor. It
is denoted by ged(a, b).

Problem 2.6. Find the greatest common divisor for the following
pairs: 8 and 62, 56 and 124.

Proposition 2.7. To compute the greatest common divisor of two
numbers a and b, let r 1 = a and let r¢ = b, and compute the suc-
cessive quotients and remainders

Ti—1 = Qi+1Ti + Tit1

for1=20,1,2,3,... until we get some remainder r, 1 equal to 0. The
last nonzero remainder r, is then the greatest common divisor of a and

b.

Proof. Let d a common divisor for a and b. At every step, d divides
r;—1 and r; and so d divides r;;1. In conclusion, d divides r, and, so,
it remains to be shown that 7, divides ¢ and b and that the Euclidean
Algorithm finishes.

To prove that 7, divides a and b start from the bottom up. First,
rn, divides r, ; (since 7,41 = 0). So, 1, divides r, o = ¢,7, 1+, and
can continue until it we see that r, divides all r;, including a and b.

The algorithm ends because r;11 < r; for all ¢ so at some point the
remainder must become zero. O
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Problem 2.8. Compute ged(22,60) and ged(1160718174, 316258250).
Proof. We will compute ged(1160718174, 316258250):

1160718174 = 3 - 316258250 + 211943424
316258250 = 1 - 211943424 4 104314826
211943424 = 2 - 104314826 + 3313772
104314826 = 3 - 3313772 + 1587894
3313772 = 2 - 1587894 + 137984
1587894 = 11 - 137984 + 70070
137984 =1 - 70070 + 67914
70070 = 1-67914 + 2156
67914 = 31 - 2156 + 1078

2156 =2-1078 40

So, the greatest common divisor is 1078.
O

Question 2.9. What is the smallest positive value of bx + 3y, where x
and y are arbitrary integers? How about 7Tx + 3y? How about 6x + 2y ¢

Experiment with numbers and conjecture the following Theorem:

Theorem 2.10. Let a and b two positive integers. The smallest pos-
itive value of ax + by is equal to ged(a,b), where x and y are some
integers.

Proof. One can deduce this from the Euclidean Algorithm. How? [

Proposition 2.11. Let p be a prime number. Show that if plab, with
a and b integers, then pla or p|b.

Proof. Assume that p does not divide a. So ged(a,p) = 1. Hence there
exist integers x and y such that ax 4+ py = 1. Multiply by b in both

sides note that since p|abz and p|py, then pl|b.
[l
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Proposition 2.12. Every positive integer greater than 1 can be decom-
posed as a product of prime numbers. The decomposition is unique up
to permuting the terms.

Proof. Let n be a positive integer. It it is prime we are done. If not
write n = ab where a < n and b < n for obvious reasons. If a and b are
both prime, we are again done. If not, continue by factorizing a and b.
Since the factors are always less than the number we are factorizing,
the procedure will stop eventually, and, then, n will be written as a
product of primes.

Uniqueness: write n = py---pr = q1 -+ qp two prime factorizations
of n. Since p; divides n, then it must divide one of the ¢'s. Say p1|gi;
since ¢; is prime, then p; = ¢;. Cancel it in both factorizations and
continue until £k = h and p; = ¢; foralli =1,--- k. O

Use the above Theorem to solve Question 3 from the Introduction.

Theorem 2.13. Prove that there are infinitely many prime numbers.
Prove that there are infinitely many prime numbers of the form 4m + 3
with m positive integer.

Proof. The first part is well known, so we will do only the second part.
the idea is similar to the behind the proof of the first part.

Assume that there are only finitely many primes of the form 4m + 3
with m positive integer. List all of them

3ap1a -y Pk

and look at 4p; - --px + 3. It cannot be prime, since it is bigger than
those listed already. Write its prime factorization. It is easy to see that
at least one of the primes of this factorization must be congruent to 3
modulo 4. But this means that p = 3 or p = p; for some 7. If p =3
then since p|dp; - - - pr + 3, we get that p|p; - - - p which is impossible.
We get a similar contradiction if p = p;.

In conclusion there must be finitely many primes of the form 4m + 3
with m positive integer. O

State Dirichlet’s Theorem.

Theorem 2.14 (Dirichlet, 1837). Let a and m be integers with gcd(a, b)
1. Then there are infinitely many primes that are congruent to a mod-
ulo m.

Problem 2.15. Is 258 +1 a composite number or not? Can you write
a factorization of it?
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Proof. Note that 2472 4+ 1 = (2201 — gntl 4 1)(22n+L 4 ontl 4 1) Tt
can be seen that 5 divides our number in a different way. However this
method will not provide a factorization of 2°*+1. Indeed, 28+1 = 42°+
1 and now we can see that 1 —(—4) = 5 divides 1+4%° = 1—(—-4)®. O

Problem 2.16. Prove that 2" + 1 prime implies that h is a power of
2.

Primes of the form 22" + 1 are called Fermat primes. Denote Fj, =
22" + 1. Fermat believed that these numbers are all primes. However,
Euler showed that F5 = 641 - 6700417.

Problem 2.17. Show that ged(F,, F,,) =1 if n # m.
Proof. Hint: Show that F,,|F, — 2 if n > m. O

Problem 2.18. Show that if a™ —1 is prime then a = 2 and n is prime.
Are all the numbers of the form 2P —1, p prime, prime numbers? Prove
or disprove. (Hint: let p=11.)

Primes of the form 2P —1 are called Mersenne primes. It is not known
if there are infinitely many numbers of this form. In 1999, Hajratwala
proved that for p = 6972593 (which is prime), 27 — 1 is prime.

We will close this section by listing a few questions.

Is it true that there are infinitely many prime numbers p such that
p+ 2 is also prime? This is believed to be true and the statement is
called The Twin primes conjecture. The best result up to date is that
of Chen Jing-run that showed that there are infinitely many primes p
so that p + 2 is either prime or a product of primes.

Is it true that every even number greater or equal to 4 is the sum
of two primes? This is believed to be true and it is called Goldbach
conjecture. I. M. Vinogradov proved (1937) that any sufficiently large
odd number is a sum of three primes. Chen Jing-run showed in 1966
that every even number n is a sum of two numbers p prime, and a
prime or a product of two primes.

Are there infinitely many primes of the form n? + 1, with n integer?
Iwaniec proved in 1978 that there are infinitely many values n such
that n2 4+ 1 is prime or a product of two primes.

Fix n > 2. What are the numbers a, b, ¢ such that a™ + b = ¢"?
Wiles has confirmed a conjecture of Fermat that says that for n > 3
there are no such numbers a, b, c. Wiles work is deep and relies of
contributions of about two dozens of other mathematicians. This result
is called the Fermat’s Last Theorem. For n = 2, it turns out that one
describes all the triples (a, b, ¢) in an elementary fashion.
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3. PYTHAGOREAN NUMBERS

We all know from geometry that in a right triangle with hypotenuse
c and sides a and b the relation a® 4+ b* = ¢* holds. Such a triple (a, b, c)
is called a Pythagorean triple. We would like to find all such triples of
integers (a, b, ¢).

First note that if there is a positive integer d that divides a, b, and c,
then we can cancel it out for both sides of the equations. This means
that we should study the equation

a’ + b =c?,
where a, b, ¢ do not share a common divisor. These triples are called
primitive Pythagorean triples.

First, what can we say about the parity of a, b, ¢?

Let us look at some Pythagorean triples: (3,4, 5), (5,12, 13), (8,15, 17),
(28,45,53). It seems a and b have different parity, while ¢ is always
odd. Let us try to prove this.

First, if ¢ and b are both even, then c is even too. False, since 2
would then divide all three numbers.

Assume that a and b are both odd: a =2z +1,b = 2y + 1. It follows
that c is even, hence ¢ = 2z. Plug this into the equation and reduce
the expression to

202 + 22 + 2% + 2y + 1 = 2z.

Clearly this is impossible and so, we have proven our assertion.

We concentrate on the equation

a4+ b =c?
with a odd, b even, a, b, c having no common factor.

Clearly, a®? = (¢ — b)(c + b). Check a few examples. What do you
notice?

Let us prove that, indeed, ¢ + b and ¢ — b are indeed squares. First,
note that in all examples ¢+ b and ¢ — b do not have common divisors.
Proving this is easier: if d divides both numbers, then d divides 2¢ and
2b. Since d is different than 2, then d divides b and ¢. But then d
divides a, too which is false.

So, ¢+ b and ¢ — b do not have a common divisor and their product
is a square. This means that ¢+ b and ¢ — b are both squares! This can
be seen from their factorization into primes.

So,c—b=s?and c+ b = t?, with s > t > 0 are odd integers with
no common factors. This shows that a = st, b = 2=t and ¢ = #,
where s and ¢ are integers. It is easy to check that for each s, and ¢
one gets a Pythagorean triple.
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For example, let s be an arbitrary odd number and ¢ = 1. Then
¢ = b+ 1 and this explains why this holds true in some examples.

There is another way of determining the Pythagorean triples: by
geometry!

Divide the Pythagorean equation by c2. So, (a/c)? + (b/c)? = 1. So
let us solve first the equation

24yt =1
in rational numbers.

Take the point (—1,0) which lies on the unit circle. Consider a line
through it of rational slope m: y = m(xz + 1). We will show that the
other point of intersection between this line and our circle has rational
coordinates. It is of course a solution of our equation. On the other
hand, if (x,y) is on the circle and it has rational coordinates, then the
line joining the point with (—1,0) has a rational slope. In conclusion,
all rational points on the circle (i.e., our solutions), except (—1,0), are
obtained by intersecting the unit circle with a line of rational slope
through (—1,0).

Let us compute the intersection between 2>+ 4> =1 and y = m(z +

1). A few manipulations will give:
m2—1 2m

r = m2r1 andy=m2—+1.
In fact, if we write m = u/v with (u,v) = 1, we get that

(e,y) = (L2 ).

U — v 2uv
u? 4+ v?2" u2 + 02
Now, by clearing the denominators will see that any Pythagorean
triple is of the form (u? — v?2, 2uv, u? + v?).
What is the relation between this description and the one we gave
in our first solution to the problem?

Remark 3.1. The books listed in the bibliography have been used
in the preparation of these notes. They contain information on many
other aspects of elementary number theory which are recommended to
the interested reader.
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