Calculus I Exam 2, Fall 2002

1. A curve *C* in the plane is the graph of the relation $y^3 - xy^2 + x^3 = 5$. Find the equation of the tangent line to the curve at the point (2,-1).

2. A cylindrical balloon is being inflated so that its volume is increasing at the rate of 3 in ³ per second. Assuming that the length of the balloon is held constantly at 9 in., at what rate is the radius increasing when it is 2 in? (The volume of a cylinder is $V = \pi r^2 h$.)

3. Let $y = (x^2 - 2)(x + 5)$. Find all local maxima, local minima and points of inflection of the graph.

4.Let $y = \sin x + \cos x$. Where between $-\pi/2$ and $\pi/2$ is there a critical point? Is this a maximum or a minimum?

5. $y = \frac{x^2}{(x-1)(x-2)}$ You must show enough work to explain how you found the various features of the graph.