MATH 1210-90 Fall 2011

Final Exam

INSTRUCTOR: H.-PING HUANG

Hint: do NOT calculate any numerical value, unless specified otherwise.

LAST NAME	
FIRST NAME	
ID NO.	

INSTRUCTION: SHOW ALL OF YOUR WORK. MAKE SURE YOUR ANSWERS ARE CLEAR AND LEGIBLE. USE **SPECIFIED** METHOD TO SOLVE THE QUESTION. IT IS NOT NECESSARY TO SIMPLIFY YOUR FINAL ANSWERS.

PROBLEM 1	30	
PROBLEM 2	30	
PROBLEM 3	30	
PROBLEM 4	30	
PROBLEM 5	30	
PROBLEM 6	30	
PROBLEM 7	30	
PROBLEM 8	10	
TOTAL	160	 1

(30 pt) Evaluate the limit

$$\lim_{h \to 0} \frac{3(5+h)^2 + 3(5+h) - (3 \cdot 5^2 + 3 \cdot 5)}{h}$$

(30 pt) Find the equation of the tangent line to the curve $y = (x + 1)(x^2 - 1)$ at the point (1, 0).

(30 pt) The function $f(x) = 4x^3 + 6x^2 - 72x$ is decreasing on the interval (____, ___). It is increasing on the interval ($-\infty$, ___) and the interval (___, ∞).

The function has a local maximum at _____. Show using both the first and second derivative tests. I expect two separate responses, each with their own work.

(30 pt) Consider the parametric equation

 $x = \cos \theta + \theta \sin \theta$ $y = \sin \theta - \theta \cos \theta$

What is the length of the curve for $\theta = 0$ to $\theta = 7/2\pi$?

 $(30~{\rm pt})$ Set up the finite integral for the volume formed by rotating the region inside the first quadrant enclosed by

$$y = x^4 \qquad y = 8x$$

(a) about the *x*-axis.

(b) about the y-axis.

Please do not evaluate the values.

(30 pt) Given

$$f(x) = \int_0^x \frac{t^2 - 1}{1 + \cos^2 t} dt$$

At what value does the local **max** of f(x) occur? **Hint:** use the first derivative test.

(30 pt)
$$\lim_{n \to \infty} \frac{1}{(1+\frac{6}{n})^2} \cdot \frac{6}{n} + \frac{1}{(1+\frac{12}{n})^2} \cdot \frac{6}{n} + \frac{1}{(1+\frac{18}{n})^2} \cdot \frac{6}{n} + \dots + \frac{1}{(1+\frac{6n}{n})^2} \cdot \frac{6}{n}$$
$$= \int_1^b f(x) \, dx.$$

Find out the upper limit b, and the integrand f(x), and the finite integral $\int_1^b f(x) dx$.

(10 pt) Evaluate the definite integral

$$\int_3^5 (\frac{d}{dt}\sqrt{4+3t^4}) dt$$