
Calculus I
Practice Problems 10: Answers
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3. Calculate the definite integrals:
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Answer. Let u � cosx � du � � sinxdx. When x � 0 � u � 1 and when x � π � 4 � u ��� 2 � 2. Thus
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4. Integrate:
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Answer. Let u � y1 � 2 � du � � 1 � 2 � y
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5. Evaluate
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Answer. Let u � 3x � 1. By the fundamental theorem of the calculus d � du
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6. Find the area of the region in the right half plane (x � 0) bounded by the curves y � x � x3 and y � x2 � x.

Answer. First, we find the points of intersection of the curves by solving the equation x � x3 � x2 � x. This
becomes x3 � x2 � 2x � 0, which has the solutions x � � 2 � 0 � 1. Since we are interested only in x � 0, the
range of integration is the interval � 0 � 1 � . From the graph (see the figure), the cubic curve lies above the
quadratic, so the area is
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7. Find the area of the region in the first quadrant bounded by the curves y � sin π
2 x and y � x.

Answer. The curves intersect at x � 0 � 1, and the sine curve is above the line (see the figure), so the area is
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8. Find the area of the region under the curve y � x � x2 � 1, above the x-axis and bounded by the lines x � 1
and x � 3.

Answer. The area (see the figure) is given by
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1 x � x2 � 1dx. Let u � x2 � 1 � du � 2xdx. When x � 1 � u � 2
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9. Find the area under the curve y � x2 � x
� 2, above the x-axis and between the lines x � 1 and x � 2.

Answer. The area is � 2
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10. What is the area of the region bounded by the curves y � x3 � x and y � 3x?

Answer. First find the points of intersection:

x3 � x � 3x or x3 � 4x

has the solutions x � � 2 � 0 � 2. The line y � 3x lies below the curve y � x3 � x in the interval (-2,0) and above
that curve in the interval (0,2) (see the accompanying figure). The areas of these two regions are given by the
integrals: � 0
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0
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Since the two intervals are symmetric about 0, and the integrand is an odd function, these two integrals are
the same. Thus the area is
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