
CHAPTER 1

Rate of Change, Tangent Line and Differentiation

�
1.1. Newton’s Calculus

Early in his career, Isaac Newton wrote, but did not publish, a paper referred to as the tract of October
1666. This was his sole work purely on mathematics, and contained the fundamental ideas and techniques
of the calculus. While writing (1684-87) the Principia Mathematica, the fundamental exposition of his
mathematical physics of “the system of the world”, he reworked and expanded these ideas and included
them as part of this treatise. Newton’s central conception was that of objects in motion. To Newton
motion is described by the position and velocity of the particle relative to a fixed coordinate system, as
functions of time. These then are the fundamental variables: x � y � z, etc., and their velocities are denoted
by ẋ � ẏ � ż, etc. Now, velocity is a measure of the rate of change of position (and acceleration, denoted ẍ,
etc., is a rate of change of velocity), and what was needed was a means to express this relationship, and a
process of deriving relations among the various velocities and accelerations from given relations among
the variables. This is the Calculus of Newton.

Calculus, as it is presented today starts in the context of two variables , or measurable quantities, x � y,
which are related in the sense that values of one of the variables determine values of the other. A function
y � f � x � is a rule which specifies this relation between the input or independent variable x and the output
or dependent variable y. This may be given by a formula, a table, or a computer algorithm; in fact, any
set of rules which uniquely determine outputs for given inputs. The set of allowable values for the input
variable is called the domain of the function, and the set of outputs, the range. In our context both the
domain and the range are sets of real numbers.

An interval is the set of all real numbers between specified real numbers c and d. This is denoted by

(1.1) � c � d ����� x : c � x � d 	
if neither endpoint is included, and by

(1.2) 
 c � d ���
� x : c � x � d 	
if both are included. We shall say “I is an interval about a” to mean that a is between the endpoints of
the interval I.

Now, suppose that y � f � x � is a function defined for all x in an interval I ��� c � d � . The graph of f
is the set of all points � x � y � , where x is in the interval � c � d � and y � f � x � . Calculus studies the behavior
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Figure 1.1

PSfrag replacements

�
x0 � y0 �

�
x2 � y2 �

�
x3 � y3 �

x1 � x0

y1 � y0

x3 � x2

y3 � y2

y1 � y0
x1 � x0 �

y3 � y2
x3 � x2

�
x1 � y1 �

of y as a function of x in terms of the way y changes as x changes. For x0 � x1 points in the interval, and
y0 � f � x0 � , y1 � f � x1 � , the ratio

(1.3)
∆y
∆x
� y1 � y0

x1 � x0

is called the average rate of change of y with respect to x in the interval between x0 and x1. This is the
ratio of the change in y (denoted ∆y) with the change in x (denoted ∆x).

Linear Functions
If the ratio (1.3) is the same for all points � x0 � y0 � � � x1 � y1 � on the graph, we say that y � f � x � is a

linear function of x.This is because that condition is equivalent to saying that the graph of y � f � x � is a
straight line (which is easy to see using similar triangles; see figure 1.1).

For y � f � x � a linear function, the ratio (1.3) is called the slope of the line, denoted m. Then another
point � x � y � is on the line if and only if the calculation of (1.3) gives the slope. Thus, the condition for
� x � y � to be on the line is

(1.4)
y � y0

x � x0
� m or y � y0 � m � x � x0 ���

This is called the point-slope equation of the line. If we wish to find the equation of the line through two
points � x0 � y0 � and � x1 � y1 � , we use those points to find the slope and then use the above equation. Thus,
the condition for � x � y � to be on the line through these points is

(1.5)
y � y0

x � x0
� y1 � y0

x1 � x0
�

This is the two-point equation for the line.

Example 1.1 Find the equation of the line through the points (2,-1), (3,7). Then find the line through
(6,-1) of the same slope.
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Using (1.5) with � x0 � y0 � � � 2 � � 1 � and � x1 � y1 � � � 3 � 7 � , we have that � x � y � is on the line when

(1.6)
y � � � 1 �

x � 2
� 7 � � � 1 �

3 � 2
or

y � 1
x � 2

� 8
1
�

giving us the equation y � 8x � 17. This line has slope m � 8. Thus the line through (6,-1) of the same
slope has the equation

(1.7)
y � � � 1 �

x � 6
� 8 or y � 8x � 49 �

Example 1.2 Is P(5,12) on the line joining Q(2,7) and R(8,15)?
The slope of the line through Q and R is � 15 � 7 ��� � 8 � 2 ��� 4 � 3. The slope of the line through P and

Q is � 12 � 7 ����� 5 � 2 � � 5 � 3. Since these two lines do not have the same slope, they cannot be the same
line. Thus P is not on the line through Q and R.

Here are some facts about lines which will be useful when studying more general curves.
a. If L is a line of slope m, then

(1.8) m � tanθ

where θ is the angle that L makes with a horizontal line. If the line is vertical, then L has infinite slope.
Suppose we are given two lines: L1 of slope m1, and L2 of slope m2.Then

b. L1 and L2 are parallel if and only if m1 � m2.
c. L1 and L2 are perpendicular if and only if m1m2 � � 1.
d. The length of of the line segment between two points P � x1 � y1 � and Q � x2 � y2 � (the distance between

the two points) is

(1.9) �PQ � ��� � x1 � x2 � 2 � � y1 � y2 � 2 �

Example 1.3 Find the equation of the line through (2,3) which is perpendicular to the line L : 2x � 3y �
11.

The line L has slope m � � 2 � 3. Thus the line perpendicular to L has slope � 1 ��� � 2 � 3 � � 3 � 2. Thus
the equation of the line we seek is

(1.10)
y � 3
x � 2

� 3
2

or y � 3
2

x �

Polynomial functions
For the general curve given by the equation y � f � x � , the ratio (1.3): ∆y � ∆x is the slope of the line

joining the two points � x0 � y0 � and � x1 � y1 � on the graph of f . But now, if the graph is not a line, this ratio
changes as the point � x1 � y1 � moves. As x1 approaches x0, this ratio may approach a specific number.
If it does, this number is called the derivative of y with respect to x, evaluated at the point x0. It is
the instantaneous rate of change of y with respect to x at x0, and also the slope of the line which best
approximates the curve at � x0 � y0 � , called the tangent line to the curve (see Figure 1.2).
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Figure 1.2

PSfrag replacements �
x0 � y0 �

�
x1 � y1 �

�
x1 � y1 �

�
x1 � y1 �

Tangent
Line

In this chapter we shall concentrate on finding the derivative of functions given by a formula; this
process is called differentiation. It turns out to be quite simple for polynomial functions. But first, we
make this discussion explicit.

Definition 1.1 Let y � f � x � be a function defined for all values of x in an interval about the point a. If
the difference quotient

(1.11)
f � x � � f � a �

x � a

approaches a specific number L, then we say that f is differentiable at a, and the number L is called the
derivative of f at a, denoted f � � a � . It is the slope of the tangent line of y � f � x � at a.

Example 1.4 Consider f � x � � x2, Find the tangent line to this curve at the point � a � f � a � � .
We take a point � x � f � x � � near � a � f � a � � and calculate the difference quotient

(1.12)
f � x � � f � a �

x � a
� x2 � a2

x � a
� � x � a � � x � a �

x � a
� x � a �

Clearly, as x approaches a, x � a approaches 2a, so we get f � � a ��� 2a. Since this is true for any value a,
we can conclude that if f � x ��� x2, its derivative is f � � x ��� 2x.

Example 1.5 Find the equation of the line tangent to the curve y � x2 at the point (3,9).
For x � 3, the derivative is f � � 3 � � 2 � 3 � � 6. Thus the tangent line has the equation

(1.13)
y � 9
x � 3

� 6 or y � 6x � 9 �
The ease with which we calculated the derivative for y � x2 followed from simple algebraic facts. We
shall see that this works in general for polynomials; but first, one more example:

Example 1.6 If f � x ��� x3, f � � x ��� 3x2.
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Fix a point � a � a3 � on the graph, and let
�
x � x3 � be a nearby point. We look at the slope of the line

joining these points:

(1.14)
∆y
∆x
� x3 � a3

x � a
�

Since the quotient of x3 � a3 by x � a is x2 � ax � a2 this can be rewritten as

(1.15)
x3 � a3

x � a
� � x � a � � x2 � ax � a2 �

x � a
� x2 � ax � a2 �

and evaluating this at a, we get f � � a � � 3a2.

Now, for any polynomial y � f � x � , this process will work: divide f � x � � f � a � by x � a, and evaluate
the quotient at x � a to calculate the derivative. Let’s spell this out, starting with the division theorem of
algebra:

Theorem 1.1 Let f be a polynomial of degree d. Then, for any number a when we divide f � x � by x � a,
we get a quotient which is a polynomial of degree d � 1 and a remainder of f � a � :

(1.16)
f � x �
x � a

� q � x � � f � a �
x � a

�

Now, to apply this to the calculation of instantaneous rate of change, move the second term on the
right to the left:

(1.17)
f � x � � f � a �

x � a
� q � x ���

Now, as we let x approach a, the difference quotient q � x � approaches q � a � , so the polynomial is differen-
tiable at a, and its derivative is q � � a � .

Theorem 1.2 A polynomial y � f � x � is everywhere differentiable. Its derivative at x � a is q � a � , where
q is the quotient of f � x � � f � a � by x � a.

Now, Newton realized that using long division would be a tedious way to calculate derivatives, and
with them instantaneous rates of change, so he had the genius to take a slightly more abstract approach
to lead to an automatic way of calculating derivatives. First, we must make explicit what we mean by the
phrase ”the expression approaches a specific number” by introducing the notion of limit. Suppose that
y � g � x � defines a function in an interval about x0. We say that g has the limit L as x approaches x0 if we
can make the difference � g � x � � L � as small as we need it to be by taking x as close to x0 as we have to.
More precisely, but less intuitively,

Definition 1.2 limx � x0
g � x � � L if, for any ε � 0 there is a δ � 0 such that � x � x0 � � δ implies� g � x � � L � � ε .

We now observe that limits behave well under algebraic operations.
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Proposition 1.2 Suppose that f and g are functions defined in an interval about x0 and that

(1.18) lim
x � x0

f � x ��� L � lim
x � x0

g � x � � M �
Then a)

(1.19) lim
x � x0

� f � x � � g � x � � � L � M

b)

(1.20) lim
x � x0

� f � x ��� g � x � � � L � M

c) If M
�� 0, then

(1.21) lim
x � x0

f � x �
g � x � �

L
M
�

Applying this proposition to the calculation of derivatives, we see how differentiation behaves under
algebraic operations:

Proposition 1.3 Suppose that f and g are functions defined and differentiable in an interval I. Then
a) f � g is differentiable in I, and � f � g � � � f � � g � .
b) f g is differentiable in I, and � f g � � � f � g � f g � .

We give a brief justification of these rules, which follow from the corresponding rules for limits
(proposition 1.3). This is straightforward for part a), but for the product, the argument requires some
preliminary algebraic manipulation. Suppose then, that f and g are differentiable at a, and let h � f g.
Then to see that h is differentiable, we must take the limit, as x approaches a of

(1.22)
h � x � � h � a �

x � a
� f � x � g � x � � f � a � g � a �

x � a
�

The product rule for limits does not apply directly, for this is not a product. However, if we add and
multiply f � a � g � x � , we get

(1.23) f � x � g � x � � f � a � g � a ��� 
 � f � x � � f � a � � g � x � � � 
 f � a � � g � x � � g � a � � � �
which leads to a sum of products

(1.24)
f � x � g � x � � f � a � g � a �

x � a
� g � x � f � x � � f � a �

x � a
� f � a � g � x � � g � a �

x � a
�

Now, we can take the limits using proposition 1.3. We have to note that, since g is differentiable, we also
have limx � a g � x ��� g � a � .

Finally this brings us to the rule for differentiating polynomials.

Proposition 1.4
a) If f is constant, then f � � 0.
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b) If f � x � � axn for some positive integer n, then f � � x ��� anxn � 1.
c) A polynomial is differentiated term by term, using b) for each term.

To verify a), we only have to note that a constant function is unchanging; its graph is a horizontal
line, so has slope 0. c) follows from the fact that the limit of a sum is the sum of the limits. b) follows
by a bootstrap method. We have already seen this for n � 0 � 1 � 2 � 3. To proceed, we use the product rule.
For example, take n � 4:

(1.25) � x4 � � � � x3x � � � � x3 � � x � x3x � � � 3x2 � x � x3 � 1 ��� 4x3 �
If we have the proposition for all integers up to n � 1, then we have it for n by the same method:

(1.26) � xn � � � � xn � 1x � � � � � n � 1 � xn � 2 � x � xn � 1 � 1 � � nxn � 1 �

Example 1.7 Let f � x ��� 2x2 � 3x � 3. Find f � � x � . What is the equation of the line tangent to the curve
given by y � f � x � , at the point (1,2)?

Using proposition 1.4, we have

(1.27) f � � x ��� 2 � 2x � � 3 � 1 � � 0 � 4x � 3 �
This gives the slope of the tangent line at (1,2) by evaluating at x � 1 : f � � 1 ��� 4 � 1 � � 3 � 1. Thus the
equation of the tangent line is

(1.28)
y � 2
x � 1

� 1 or y � x � 1 �

Example 1.8 If

(1.29) f � x � � 2x5 � x4 � 8x3 � 2x � 5 �
then

(1.30) f � � x � � 2 � 5x4 � � 4x3 � 8 � 3x2 � � 2x0 � 0 � 10x4 � 4x3 � 24x2 � 2 �

If a function f is differentiable at every point of an interval I, then the derivative is defined at every
point in the interval I, and thus is a function on I. This function, denoted f � , is defined by the rule: for
all x in I,

(1.31) f � � x ��� lim
h � 0

f � x � h � � f � x �
h

�
In particular, since f � is now a function on I, it too may be differentiable. If so, its derivative is denoted
f � � � x � , and is called the second derivative of f with respect to x. Proceeding, we can define third and
fourth derivatives and so forth.

So far, we have been interpreting the derivative as the instantaneous rate of change of y with respect
to x, or the slope of the tangent line. Another fundamental interpretation is in terms of motion. Consider
an object moving along a straight line. Let the variable t represent time, and x the displacement of the
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object from a fixed point, 0, on the line. Then the position of the object at time t is given by a function
x � x � t � . The velocity (denoted at time t as v � t � ) of the object is the instantaneous rate of change of x
with respect to t. The acceleration of this object (denoted a � t � ) is the instantaneous rate of change of v
with respect to t. Thus, if v � t � is the velocity of the object at time t, and a � t � its acceleration, we have

(1.32) v � t � � x � � t � � a � t � � v � � t � � x � � � t ���

Example 1.9 Suppose an object is moving in a straight line so that its displacement at time t is given by
x � t � � 4t2 � 12t. Find the formulas for the velocity and acceleration of this object. What are the velocity
and acceleration at time t � 5?

Differentiating, we find that v � t ��� x � � t � � 8t � 12 � a � t � � x � � � t � � 8. Thus the velocity at time t � 5
is v � 5 � � 8 � 5 � � 12 � 52, and the acceleration is a � 5 � � 8.

In many physical problems, an object is moving at constant acceleration. For example, an object falls
near the surface of the earth at an acceleration of 32 ft/sec2 downward (or 9.8 m/sec2 downward, in the
metric system). If the acceleration is constant, that tells us that ratio of the change in velocity over the
change in time is constant: that is, the velocity is a linear function of time. Similarly, since the velocity
is a linear function, the distance traveled must be given by a quadratic function; all we have to do is to
use the given data to find the coefficients. We conclude:

Proposition 1.5 Suppose an object moves at constant acceleration a. Then, if at time t � 0 the object is
at position x0 and has velocity v0, then at any time we have

(1.33) x � t ��� a
2

t2 � v0t � x0 � v � t ��� at � v0 �

It is easy to check that these functions do have the desired properties, that is, that x � � t � � v � t � and
v � � t � � a, and that their values at t � 0 are as given. Furthermore, we can argue intuitively, as we have
done above, that these are the precise formulas for distance and velocity. For, since the rate of change
of velocity is constant, velocity must be linear, and since the rate of change of distance is linear, it
must be quadratic. This was the way Newton argued; but there are loose ends as was pointed out very
articulately by Newton’s contemporary, George Berkeley. Why indeed, are these the only formulas with
the desired properties? How do we know that there does not exist some as yet unknown mysterious
functions which have the same values at t � 0, and the given acceleration? The third book of Newton’s
Principia gives formidable evidence that no such mysteries exist, and that work, together with much
subsequent experimental evidence, carried the day. But Berkeley’s objections were valid on logical
grounds, and the issue was not satisfactorily resolved until the nineteenth century.

Example 1.10 An object is project upward at an initial velocity of 48 ft/sec. How high does it go?
We measure distance upward from the starting point, so that x0 � 0 and v0 � 48. The acceleration

due to gravity is a � -32 ft/sec, so (by proposition 1.5), the equations of motion (1.33) are

(1.34) x � t � � � 16t2 � 48t � v � t � � � 32t � 48 �
If we complete the square for x � t � , we have

(1.35) x � t ��� � 16 � t � 3 � 2 � 2 � 36 �
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Thus the greatest value of x is achieved at t � 3 � 2, and is x � 3 � 2 � � 36 feet. Note that at this highest
point, v � 3 � 2 � � 0, confirming our intuition that at the moment the object turns around its velocity must
be zero.

Example 1.11 An automobile is traveling at 60 mph. At what rate must it decelerate so as to stop in
100 yards?

Converting everything to feet and seconds, we have an initial velocity of 88 ft/sec, and we can take
s � 0 � � 0. At some future time T , we have s � T � � 300 feet, v � T � � 0. Call the rate of deceleration a. The
equations of motion 1.33 are

(1.36) x � t ��� � a
2

t2 � 88t � v � t ��� � at � 88 �
At time T we have 300 � � � a � 2 � T 2 � 88T � 0 � � aT � 88. From the second we get T � 88 � a; putting
that in the first we get

(1.37) 300 � � a
2

882

a
� 88

88
a

or 300 � 882

�
� 1

2a
� 1

a � or 300 � 882

2a
�

so a � 12 � 91 ft/sec2.

�
1.1.1 More rules of differentiation

Eventually we will develop a full set of rules for finding the derivative of any function given by a formula.
We turn now to the quotient rule to handle quotients of polynomials (called rational functions).

Proposition 1.6 Suppose that f and g are differentiable at a point a, and g � a � �� 0. Then 1 � g and
h � f � g are differentiable at a, and

(1.38)

�
1
g � � � � g �

g2 � h � � g f � � f g �
g2 �

To show that 1 � g is differentiable, we must calculate the limit as x � a of

(1.39)
1

g � x � � 1
g � a �

x � a
�

Once again, a little algebra helps us. Simplifying the compound fraction, we get

(1.40)
1

x � a
�
g � a � � g � x �

g � x � g � a � �
� 1

g � x � g � a �
g � x � � g � a �

x � a
�

which has as its limit

(1.41)

�
1
g � � � a � � � g � � a �

� g � a � � 2 �
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Now the second equation of (1.38) follows from this and the product rule applied to f � g considered as
f � � 1 � g � .
(1.42)

�
f
g � � � f

�
1
g � � � f �

�
1
g � � f

�
� g �
g2 � � f �

�
1
g � � g f � � f g �

g2 �
In particular, we have

(1.43)
d
dx

�
1
x � � � 1

x2 �

Proposition 1.7 Let n be any integer, positive, zero, or negative. Then

(1.44) for f � x � � xn we have f � � x � � nxn � 1 �

By proposition 1.4b, this is true for n positive or zero. For negative exponents, we apply the quotient
rule to f � x � � 1 � xn with n positive:

(1.45) f � � x � � � nxn � 1

� xn � 2 � � � n � x � n � 1 �

which is just (1.44) for the negative exponent � n.

Example 1.12 Find the derivative of f � x � � x2 � 2x � 3
x �

5
x2 �

Rewrite the function in exponential notation: f � x � � x2 � 2x � 3x � 1 � 5x � 2. Now use (1.44): f � � x � �
2x � 2 � 3 � � x � 2 � � 5 � � 2x � 3 � , which can be rewritten as

(1.46) f � x � � 2x � 2 � 3
x2 � 10

x3 �
Example 1.13. Let f � x ��� 30x � 2x � 1. For what value of x is f � � x ��� 0?

Differentiate: f � � x ��� 30 � 2x � 2. Now solve f � � x ��� 0:

(1.47) 0 � 30 � 2
x2 so that x2 � 15

and the answer is x ��� � 15.
Finally, we see how to differentiate the square root:

Proposition 1.8 If f � x ��� � x for x � 0, then f � � x ��� 1 ��� 2 � x � .

Here we use the fact that x � a � � � x �
�

a � � � x � � a � . Thus

(1.48)

�
x � � a
x � a

�
�

x � � a
� � x �

�
a � � � x � � a � �

1�
x � � a

� 1
2
�

a

as x � a, for a
�� 0.
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�
1.2. Leibniz’ Calculus of Differentials

Up to this point we have been following the development of the Calculus according to Newton. We
have been considering variables y � z � u � v, etc. as functions of a particular variable (called the “indepen-
dent variable”) x, and discovering how to find rates of change of the dependent variables relative to the
independent variable.

The ideas of Leibniz follow a different, but equivalent, set of ideas. Leibniz is concerned with a
collection of variables x � y � z � u � v � etc � and their “infinitesimal increments”. This is a hard concept to get
a hold on, but we can think of it this way. When we actually make measurements, we always have in
mind, even if unspecified, an “error bar”; that is, a largest allowable error. Thus, our calculators display
numbers to 8 decimal points, allowing for a “negligible” error of at most 10 � 8. A more efficient computer
has a smaller error bar, perhaps 10 � 32, or 2 � 128. Instruments of measurement, no matter how delicate,
have to allow for such an error bar. So, if, say u is a measurable variable, it comes equipped with an
error bar: an allowable increment in a measurement which does not change the accepted value of the
measurement. It is this which we should call the “infinitesimal increment” in u, called by Leibniz the
differential of u, denoted du. However, the important feature of this concept is that it is not tied down to
the level of accuracy of today’s instruments, but it represents the error bar for all time: du stands for the
smallest measurable increment for all ways of measuring ever to come.

We get a more concrete interpretation of the differential by relating it to the linear approximation
of the variables. More precisely, suppose the variables x � y are related by y � f � x � . The tangent line
at a point

�
x0 � y0

� is the line which best approximates the curve. We have used the symbols ∆x � ∆y to
represent changes in the variables x and y along the curve; now we let dx � dy represent changes in the
variables along the tangent line. Since the slope of the tangent line at

�
x0 � y0

� is f �
�
x0

� , we obtain this
important relationship between the differentials: at the point

�
x0 � f

�
x0

� � ,

(1.49)
dy
dx
� lim

∆x � 0

f � x � � f
�
x0

�
x � x0

� f �
�
x0

� �

or, without specifying the particular point,

(1.50) dy � f � � x � dx �
This we can interpret as the equation of the tangent line, by replacing dx and dy by x � x0 y � y0.

Example 1.13 Find the equation of the tangent line to the curve y � x3 � 2x � 5 at the point � 2 � 9 � . First,
we calculate the relation between the differentials:

(1.51) dy � �
3x2 � 2 � dx �

At x � 2, this gives dy � 10dx. Now we interpret this as the equation of the tangent line by replacing dy
by y � 9 and dx by x � 2. The equation of the tangent line is thus

(1.52) y � 9 � 10 � x � 2 � or y � 10x � 11 �

Finally, considering the equation dy � f � � x � dx as the linear approximation to the equation y � f � x �
(at a particular point), we can make preliminary estimates of the change in y, given a change in x.

Example 1.14 The volume of a sphere of radius r is V � � 4 � 3 � πr3. Suppose the surface of a sphere of
radius 6 feet is covered by a 1 inch coat of paint. How much paint will be needed? From the defining
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equation we have dV � 4πr2dr; so letting r � 6 feet and dr � 1 � 12 feet, we can estimate the change in
volume to be

(1.53) dV � 4π � 6 � 2 � 1
12
� � 37 � 7 cu � f t �

Thinking of the derivative as the ratio of two quantities which eventually become zero has its philo-
sophical problems, and was also subjected to the scathing criticism of Berkeley. He also objected to
Newton’s methods on the same ground: when we write

(1.54)
f � x � � f � a �

x � a
� x2 � a2

x � a
� � x � a � � x � a �

x � a
� x � a �

by what right are we now able to let x become a? If we did so one step sooner, we’d be dividing by
zero, which is forbidden. So, in this set of equations x cannot be a. But in the next line we say, “let x
be a”! These philosophical obstacles were eventually overcome; we shall proceed without resolution, as
did Newton, Leibniz and their successors to enormous effect. Suffice it to say that this can all be put on
a logical footing, while at the same time, the concept of differential as “smallest possible increment” is
a powerful intuitive tool throughout mathematics and its applications. For example, we can easily give a
heuristic derivation of the law of differentiation for composite functions.

�
1.3. The Chain Rule

Suppose that y � u and x are variables such that u is a function of x: u � f � x � , and y is a function of u:
y � g � u � . Then y can be viewed as a function of x by writing y � h � x � � f � g � x � � . How do we find the
rate of change of y with respect to x? Using differentials, we have: dy � f � � u � du, and du � g � � x � dx,
so that dy � f � � u � g � � x � dx, it being understood that in this formula u is to be expressed in terms of x. A
shorthand for this is

(1.55)
dy
dx
� dy

du
�
du
dx
�

Example 1.15 Let y � � 4x � 1 � 3. We introduce the intermediate variable u � 4x � 1, so that y � u3.
Then dy � 3u2du, and du � 4dx, so that

(1.56)
dy
dx
� 3u2 � 4 � � 12 � 4x � 1 � 2 �

Example 1.16 If y � x � n , we introduce u � xn, so that y � u � 1. Then

(1.57)
d
dx
� x � n ��� dy

dx
� dy

du
du
dx
� � 1

u2 nxn � 1 � � nxn � 1

� xn � 2 � � nx � n � 1 �

giving another derivation of proposition 1.8.
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Example 1.17 Let y ��� � 2x � 1 � 3 � 5 � 2. Here we need to use the chain rule more than once. We think
of y � v2, where v � u3 � 5, and u � 2x � 1. Then

(1.58)
dy
dx
� dy

dv
dv
du

du
dx
� 2v � 3u2 � � 2 � � 6 � � 2x � 1 � 3 � 5 � � 2x � 1 � 2 �

The statement of the chain rule is as follows.

Proposition 1.9 Suppose that g is differentiable at the point a, and f is differentiable at g � a � . Then the
composed function h � x � � f � g � x � � is differentiable at a and

(1.59) h � � a � � f � � g � a � � g � � a � �
In particular,

Proposition 1.10 If f is differentiable at a, and n is any positive or negative integer, h � x � � � f � x � � n is
also differentiable at a and

(1.60) h � � x ��� n � f � x � � n � 1 f � � x � �

Of course, the Leibniz formulation 1.55 is easier to remember and apply than proposition 1.10. For
that reason we shall begin to adopt the Leibniz notation for differentiation: if y � f � x � is differentiable
in an interval I, we write

(1.61) f � � x ��� dy
dx

and use f � � x � and dy � dx interchangeably. The notation for higher derivatives is:

(1.62) f � � � x ��� d2y
dx2 � f � � � � x ��� d3y

dx3 � etc �
In this notation, Proposition 1.10 becomes simply

(1.63)
d
dx
� yn � � nyn � 1 dy

dx
�

�
1.4. Trigonometric Functions

Consider a particle moving in the counterclockwise direction around the circle of radius 1 with constant
angular velocity of 1 radian/second such that at time t � 0 it is at the point � 1 � 0 � . Then its position at
time t is � cos t � sin t � . These functions are defined for all values of t, and are periodic of period 2π since
in time 2π the particle will make one full circuit of the circle.
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Figure 1.3: Pascal’s derivation.

PSfrag replacements

dy
dt

dt
� dx

x � sin t

y � cos t

�
I �

t

There are four other trigonometric functions defined by the equations

(1.64) tant � sin t
cos t

� cot t � cos t
sin t

� sec t � 1
cos t

� csc t � 1
sin t

�
Assuming that these functions are differentiable, we can calculate the derivatives by an argument using
differentials due to Blaise Pascal. In figure 1.3 we have located the moving point at P � � cos t � sin t �
at time t, and its position Q after an infinitesimal increment dt. Since we are on the unit circle t also
measures arc length along the circle. The triangle with sides dx � dy � dt is called the “differential triangle”.
It may be of concern that dt represents an arc of the circle, but, remember, at the differential level an arc
and a straight line are indistinguishable. Since the tangent line to the circle is perpendicular to the radius
at the point P, the differential triangle is similar to the triangle (I) in figure 1.3.

Thus

(1.65) � dx
sin t

� dt
1
� dy

cost
� dt

1
�

so

(1.66)
dx
dt
� � sin t � dy

dt
� cos t �

Since x � cos t � y � sin t, we obtain the first part of the following.

Proposition 1.11
a) d

dt � sin t ��� cos t d
dt � cos t � � � sin t �

b) d
dt � tan t � � sec2 t d

dt � cot t ��� � csc2 t �
c) d

dt � sec t � � sec t tan t d
dt � csc t � � � csc t cot t �

b) and c) follow from the quotient rule. For example, b):

(1.67)
d
dt
� tan t � � d

dt
sin t
cos t

� cos t cos t � sint � � sin t �
cos2 t

� 1
cos2 t

� sec2 t �
Remember, that in the the above discussion we have assumed that the trigonometric functions were
differentiable, and it was that assumption that allowed us to consider an arc of a (differential) circle as a
straight line. These formulae imply the following limit results, just by the definition of the derivative.
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Proposition 1.12

(1.68) lim
x � 0

sinx
x
� 1 � lim

x � 0

cosx � 1
x

� 0 �

These can be proven directly by geometric methods.

�
1.5. Implicit Differentiation and Related Rates

Suppose that x and y are variables which are related by a functional equation: F � x � y � � c, a constant.
We say that this relation defines y implicitly as a function of x. For, in principle, given a value of x, say
x � a, we can solve the equation F � a � y � � c for y, giving the “rule” defining y in terms of x. However, to
find dy � dx we need not solve this equation. When y and x are so related, their differentials are related as
well, and the chain rule can be used to find that relationship, as a function of both x and y. The idea is to
think of z � F � x � y � as another variable which, because of the relation F � x � y ��� 0 is constant, so dz � 0.
Now, apply the chain rule to the expression for z.

Example 1.18 Suppose that the variables x and y satisfy the relation

(1.69) x2 � xy � 2y2 � 4 �
Letting z represent this defining relation, we have dz � 0. Now, using 1.31 and the rules for differentia-
tion,

(1.70) dz � 2xdx � � xdy � ydx � � 4ydy � 0 �
giving us

(1.71) � � x � 4y � dy � � � 2x � y � dx �
leading to this expression for the derivative:

(1.72)
dy
dx
� 2x � y

4y � x
�

Example 1.19 What is the equation of the tangent line to the curve given by 1.69 at the point (2,1)? We
find the slope by substituting the values x � 2 � y � 1 in equation 1.71:

(1.73) m � dy
dx
� 2 � 2 � � 1

4 � 1 � � 2
� 5

2
�

Then the equation of the line is

(1.74) y � 1 � 3
2
� x � 2 � or y � 3

2
x � 4 �
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Notice that, if we substitute x � 2 � y � 1 � dy � y � 1 � dx � x � 2 into equation 1.70 we get the same
result. That is because equation 1.70 is the linear approximation to the relation between x and y, which
is of course the same as the equation of the tangent line.

Example 1.20 Find the equation of the tangent line to the curve y3 � 2cos2 x � 0 at the point � π � 4 � � 1 � .
We differentiate implicitly:

(1.75) 3y2dy � 2cosxsinxdx � 0 �
Now, at the point � π � 4 � � 1 � � y2 � 1 � cosx � sinx � � 2 � 2, so this becomes 3dy � dx � 0. Replacing dx
by x � π � 4 and dy by y � � � 1 � gives the equation of the tangent line:

(1.76) 3 � y � 1 � �
�
x � π

4 � � 0 � or 3y � x � π
4 � 3 �

Related Rates
Suppose we are in a situation where one or more variables are related, and the variables are functions

of time. For example, if a spherical balloon is being inflated, then during this process the volume (V ),
area (A) and radius (r) are increasing with time. Since these are all related, we are able, by differentiation
to relate the rates of growth. For example, suppose the balloon is being inflated by putting gas in at a
steady rate of 3 cc/sec. We may ask “at what rate is the radius changing?” We start with the formula
relating volume with radius: V � � 4 � 3 � πr3. V and r are functions of time, so, differentiating with respect
to time we obtain

(1.77)
dV
dt
� 4

3
π

�
3r2 dr

dt � � 4πr2 dr
dt
�

Putting in the datum dV � dt � 3, we find

(1.78)
dr
dt
� 3

4πr2 cm � sec �

so the change in radius depends on the radius at a particular time.

Here is a protocol for attacking such problems.

Step 1. Draw a picture (if appropriate), and identify the relevant variables: those things which can
change. State the problem in terms of the variables.

Step 2. Find a relationship among the variables.

Step 3. Differentiate, to obtain a relationship among the variables and their rates of change.

Step 4. Put in the values of the variables at the time in question, and solve the resulting equation.
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Example 1.21 Suppose as above a balloon is being inflated with gas at a rate of 3 cc/sec. At what rate
is the area increasing when the radius is 14 cm? First, we identify the variables as volume: V , area: A,
and radius: r. Now, these are related by the equations

(1.79) V � 4
3

πr3 � A � 4πr2 �
Now, we differentiate these equations:

(1.80)
dV
dt
� 4πr2 dr

dt
� dA

dt
� 8πr

dr
dt
�

Now, at the specific time of interest, r � 14 cm, and

(1.81) dV � dt � 3

cc/sec. Substituting these values, we have:

(1.82) 3 � 4π � 14 � 2 dr
dt
� dA

dt
� 8π � 14 � dr

dt
�

Then dr � dt � 3 ��� 4 � 14 � 2 π � , so the second equation gives

(1.83)
dA
dt
� 8π � 14 � 3

4 � 14 � 2 π
� 6

7
cm2 � sec �

Example 1.22 A ship leaves port at noon heading north at 25 knots (nautical miles per hour), and 2
hours later another ship leaves heading west at 30 knots. Assuming the ships travel in straight lines, at
what rate is the distance between the ships increasing after an additional 3 hours?

First, the variables are: t, the time elapsed since noon, N, the distance traveled in that time by the
ship heading north, W , the distance traveled by the ship heading west, and Z, the distance between them.
The relations among these variables are:

(1.84) Z2 � N2 � W2 �

from the Pythagorean theorem. In t hours after noon, the first ship has traveled 25t nautical miles:
N � 25t, and, since the second ship started two hours later, it has traveled 30 � t � 2 � nautical miles
(notice, we are assuming that t � 2). Now since we have been given the rates of change of N and W , and
want to find that of Z, we differentiate the first equation with respect to t to relate these rates:

(1.85) 2Z
dZ
dt
� 2N

dN
dt
� 2W

dW
dt

�
Now, at t � 5, we have N � 125, W � 75, dN � dt � 25, dW � dt � 30, giving

(1.86) Z
dZ
dt
� 125 � 25 � � 75 � 30 � � 5375 �
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We find Z by the first relation Z2 � 1252 � 752 � �
252 � � 34 � , so Z � 25

�
34. Finally,

(1.87)
dZ
dt
� 5375

25
�

34
� 36 � 87

nautical miles/hour.

Example 1.23 Suppose that x and y are functions of t which satisfy the relation x3y2 � 2y � 8. Suppose
that at the point � 1 � 2 � , the velocity of x is 3 in/sec. What is the velocity of y? Differentiating the relation
implicitly, we get

(1.88) 3x2 dx
dt

y2 � x3

�
2y

dy
dt � � 2

dy
dt
� 0 �

Now substituting x � 1, y � 2, dx � dt � 3, in (88)

(1.89) 3 � 1 � 2 � 3 � �
22 � � � 1 � 3 �

2 � 2 � dy
dt � � 2

dy
dt
� 0 �

Solving for dy � dt, we find 36 � 6dy � dt � 0, or, the velocity of y is � 6 in/sec.

Definition 1.3 For integers p and q, the function

(1.90) y � xp � q

is defined, for all positive x, as the positive solution of the equation yq � xp.

So, for example,
�

x can be written as x1 � 2, the cube root of x as x1 � 3, etc. Using implicit differentia-
tion we verify:

Proposition 1.13

(1.91)
d
dx

xn � nxn � 1 for all rational numbers n.

A rational number is a quotient p � q of integers. Differentiate the equation yq � xp implicitly:

(1.92) qyq � 1dy � pxp � 1dx or
dy
dx
� p

q
xp � 1

yq � 1 �

Replacing y by xp � q, we get

(1.93)
dy
dx
� p

q
xp � 1

xp � p � q
� p

q
xp � 1 � p � p � q � p

q
x � p � q � � 1

which is the desired result, since n � p � q.


