
CHAPTER 4

Integration

�
4.1. Antiderivatives

The basic idea of Newton’s about dynamics is this: if we know the state of a system at a particular time,
and we know the laws of change, then we can predict the state at any future time. This is embodied in his
first law of motion which says that, in the absence of external forces, an object in motion will continue its
motion in the same direction with the same speed. Put another way, if acceleration is zero, then velocity
is constant; and yet another way: if dv � dt � 0, then v � t ��� v � 0 � for all t. We have already seen this in
Chapter 2 (as theorem 2.5) :

Theorem 4.1 Suppose that f is differentiable in an interval, and has derivative zero everywhere. Then
f is constant.

As a consequence, we have

Proposition 4.1 If two functions have the same derivative, they differ by a constant.

For suppose f and g are the two functions, and f ��� g � . We can apply theorem 4.1 to h � f � g:
h �	� f �
� g ��� 0, so h � x ��� C, some constant. Then f � x �� g � x ��� C.

Definition 4.1 Given a function f , any function F such that F ��� f is an antiderivative or indefinite

integral, or just integral of f . Any integral is denoted � f � x � dx �
We emphasize that any two integrals of a given function differ by a constant. So, for example, we

know that if f � x ��� x2, then f ��� x ��� 2x, so x2 is an integral of 2x, and therefore any integral of 2x is of the

form x2 � C, for some constant C. We indicate this by writing � 2xdx � x2 � C � Now, the formulae of the

differential calculus lead to the formulae for finding integrals, although not always so easily, as we shall
see. This process of finding integrals is called integration. For example, since the derivative of a sum is
the sum of the derivatives, then the integral of a sum is the sum of the integrals. Since we differentiate xn
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by multiplying by the exponent and reducing the exponent by 1, we integrate xn by reversing the process:
increase the exponent by 1, and divide by the new exponent. To summarize:

Proposition 4.2

a) Let f be a given function, and a a number. Then � a f � x � dx � a � f � x � dx �
b) Let f and g be given functions. Then � � f � x ��� g � x � � dx � � f � x � dx � � g � x � dx

c) � xndx � 1
n � 1

xn � 1 � C � n �� � 1 �
Of course, the exclusion n � � 1 is necessary, for in this case the right hand side doesn’t make sense.

Example 4.1 Find the integral of f � x ��� x4 � 3x2 � x � 1.
We integrate term by term, using Proposition 4.2c for each term:

(4.1) � f � x � dx � x5

5
� 3

x3

3
� x2

2
� x � C

(4.2) � 1
5

x5 � x3 � 1
2

x2 � x � C

Example 4.2 � � 4x � 3 � x2 � dx � 4

�
x � 2

� 2 � � x3

3
� C � � 2x � 2 � x3

3
� C

Example 4.3 A function f � x � has the derivative f ��� x ��� x2 � x � 2, and the value at x � 2 is 5. What is
the function?

First we find the general function with the given derivative by integrating term by term:

(4.3) f � x �� 1
3

x3 � x � 1 � C

Now we substitute the given values, and solve for C:

(4.4) 5 � 1
3

23 � 1
2
� C

giving C � 17 � 6. Thus the desired function is

(4.5) f � x �� 1
3

x3 � x � 1 � 17
6

Proposition 4.2 shows us how to find integrals of polynomials. The differentiation formulae for the
trigonometric functions also lead to integration formulae for these functions.



Chapter 4 Integration 42

Proposition 4.3

a) � cosxdx � sinx � C

b) � sinxdx � � cosx � C

So far, we can only integrate functions by, so to speak, reading a table of derivatives in the reverse

direction. For example, we also know that � sec2 dx � tanx � C and � secx tanxdx � secx � C � but we

don’t yet know the integral of secx, or for that matter tanx nor x � 1. Finding integrals in general is a quite
complicated process, and as this course proceeds we will study the various techniques of integration.

The first, and most useful of these techniques is that of substitution. This is the integration form of
the chain rule. It is most conveniently stated in terms of differentials.

Proposition 4.4 Given variables u and x; suppose we know that u � u � x � is a function of x. Suppose
their differentials are related by

(4.6) f � x � dx � g � u � du

for some functions f and g. Then

(4.7) � f � x � dx � � g � u � du � C �

To see this, let G � u � ��� g � u � du � Then, treating G as a function of x by the substitution u � u � x � , we
have

(4.8)
dG
dx

� dG
du

du
dx

by the chain rule. But dG � du � g � u � , so
dG
dx

� g � u � du
dx

� f � x � by the relation 4.6. Thus G � u � x � � is an

integral of f � x � , so differs from F � x � by a constant.
This explains in part the notation for the integral: we should be thinking that it is the differential

f � x � dx which we are integrating, rather than the function. For when we change variables by substitution,
it is the entire differential which we must consider.

Example 4.4 � � 5x � 3 � 5dx � ?

Since we don’t want to multiply 5x � 3 by itself 5 times so we can use Proposition 4.2, we instead
introduce the variable u � 5x � 3. Then du � 5dx, or dx � � 1 � 5 � du, so

(4.9) � 5x � 3 � 5dx � 1
5

u5du �
We now apply the power rule to the right hand side:

(4.10) � 1
5

u5du � 1
5 �

1
6

u6 � C
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and then replace u by its expression 5x � 3 as a function of x:

(4.11) � � 5x � 3 � 5dx � 1
30

� 5x � 3 � 6 � C �

Example 4.5 � x � x2 � 1 � 3dx � ?

To integrate by substitution, always let u be what is inside the most complicated part. Here we want
to let u � x2 � 1. Then du � 2xdx, so we can replace the differential to be integrated as follows:

(4.12) x � x2 � 1 � 3dx � 1
2
� x2 � 1 � 3 � 2xdx ��� 1

2
u3du �

Then

(4.13) � x � x2 � 1 � 3dx � 1
2
� u3du � 1

2 �
1
4

u4 � C � 1
8
� x2 � 1 � 4 � C �

Example 4.6 � cos2 � 2x � 1 � sin � 2x � 1 � dx � ?

Let u � cos � 2x � 1 � . Then du � � 2sin � 2x � 1 � dx. This substitution is effective:

(4.14) � cos2 � 2x � 1 � sin � 2x � 1 � dx � � 1
2
� u2du � � 1

2
u3

3
� C � � 1

6
cos3 � 2x � 1 ��� C �

�
4.2. Separation of Variables

A first order differential equation is a relation among the variables y � y � � x. For example:

(4.15) y � � x2 � 1 � xy � � y � 2x3 � � y � � 2 � sin2 x � 1 �
A solution of a differential equation is a function f � x � such that, if we let y � f � x � � y � � f � � x � in the

equation, we get an identity. So, for the above examples, we can check that the following are solutions,
respectively:

(4.16) y � 1
3

x3 � x � 5 � y � x3 � 2x � y � sinx �
In general, it is difficult to find solutions to differential equations, but in one special case, thanks to
proposition 4.4, it is not so hard. That proposition says that if we know that the differentials f � y � dy
and g � x � dx are equal, then their integrals differ by constant. In that proposition we assumed the prior
knowledge that y is a function of x, but the technique still works without that assumption. In fact, it
comes out as a conclusion!
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So, suppose that, upon replacing y � by dy � dx, we can rewrite the differential equation as an equation
of differentials:

(4.17) f � y � dy � g � x � dx

then we can solve by integrating both sides.

Example 4.7 Solve the differential equation y � � x2

y
.

We rewrite this as dy � dx � x2 � y, which can be rewritten in differential form as ydy � x2dx. Now,
integrate both sides:

(4.18)
1
2

y2 � 1
3

x3 � C

or

(4.19) y2 � 2
3

x3 � C

(Since C represents a generic constant, so does 2C, so we can again call it C). Thus the solution is

(4.20) y � �
2
3

x3 � C �
and this is the general solution.

Example 4.8 Find the particular solution of the differential equation y � � x2

y
such that y � 7 when x � 3.

We follow the above argument to the equation

(4.21) y2 � 2
3

x3 � C

Here we use the condition y � 7 when x � 3 to identify C:

(4.22) 72 � 2
3

33 � C or 49 � 18 � C

so that C � 31. Then the solution is

(4.23) y � �
2
3

x3 � 31 �

Example 4.9 In the study of an epidemic of an airborne disease which is reinforced by prolonged
exposure to those infected, a first working hypothesis may be that the rate of spread of the disease is
proportional to the amount of interaction among those infected, which is in turn proportional to the
square of the population of infected. We then ask, how long will it take, unless some action is taken, for
the entire population to be infected? To work through an example, suppose the rate of spread (in units
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of population per day) is equal to one thousandth the square of the population. If the original infected
population is 100, how many will be infected at some future time t?

Let P � t � represent the population of infected people at time t. The given law of change is

(4.24)
dP
dt

� � 001P2

We can rewrite this in the form

(4.25) P � 2dP � � 001dt

Integrating, we find

(4.26) � P � 1 � � 001t � C �
Now when t � 0, P � 100, so C � � � 01, so we have

(4.27) � P � 1 � � 001t � � 01 �
or P � t � � � � 01 � � 001t � � 1. So, for example, after 5 days the infected population is � � 01 � � 005 � � 1 � 200,
and after 8 days it is 500. Worst of all, in ten days, P is infinite: everyone is infected, no matter how
large the original healthy population was.

Example 4.10 Suppose a ball is thrown upward at an initial velocity of 128 ft/sec. How high does it go?
Let s � v � a represent distance traveled (measured upwards, with the surface of the earth at s � 0),

velocity, acceleration. The acceleration due to gravity is

(4.28)
dv
dt

� a � � 32 ft � sec2 �
We integrate and conclude that v � � 32t � C, for some constant C. Now, since v � 128 at time t � 0, we
have

(4.29)
ds
dt

� v � � 32t � 128

and integrating again we obtain s � � 16t2 � 128t � C. Since s � 0 when t � 0, we must have C � 0, so

(4.30) s � � 16t2 � 128t

Now, at the maximum height, the velocity is zero. Solving 4.29 for v � 0, we have t � 128 � 32 � 4
seconds at the high point. Putting this value of t in 4.30, we obtain the answer

(4.31) s � � 16 � 4
2 � 128 � 4 � � 256 �

Example 4.11 In the above problem, the time it takes to attain maximum height is calculated in order
to find that height, but is otherwise irrelevant. In fact, by eliminating the variable t, we can find a more
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direct relation between distance traveled and velocity. Once again, we consider the variables s � v � a � t ,
and relate their differentials by

(4.32) ds � vdt � dv � adt �
But now, we eliminate dt by multiplying the second equation by v:

(4.33) vdv � avdt � ads

from which we conclude, by integrating

(4.34)
1
2

v2 � � ads

which is useful if a is a function of distance alone. In the case of the above problem a is constant, so
4.34 becomes � 1 � 2 � v2 � as � C. Setting s � 0 as the initial position, and v0 the initial velocity, we find
C � � 1 � 2 � v2

0, giving the relation

(4.35)
1
2

v2 � 1
2

v2
0 � as

Now, in the preceding problem a � � 32, v0 � 128 and v � 0 at the maximum height, so we get� � 1 � 2 � � 128 � 2 � � 32s; solving for s gives s � 256.

Example 4.12 An automobile traveling at a speed of 60 mph (88 ft/sec) decelerates at a rate of 12 ft/sec2.
How far does it travel before it stops?

Here a � � 12 � v0 � 88 and v � 0 when it stops. Putting these data into 4.35:

(4.36) � 1
2
� 88 � 2 � � 12s

giving s � 322 � 67 ft.

Example 4.13 Now, Newton’s second law, F � ma says that the acceleration of a body of mass m in
motion is proportional to the force F applied to it. If those forces are spatial; that is, functions of s alone,
then, by multiplying equation 4.34 by m we get

(4.37)
1
2

mv2 � � F � s � ds

which is a way of stating the law of conservation of energy: the change in kinetic energy of the moving
object (the left hand side) is equal to the work done by the force (the right hand side).

Example 4.14 To illustrate this observation, consider a rocket sitting on the surface of a planet of mass M
and radius R. With what initial velocity v0 should the rocket be propelled so as to escape the gravitational
field of the planet?
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According to Newton’s law of universal gravitation, the force F of gravity is given by

(4.38) F � � G
mM
s2

where G is a universal constant, m is the mass of the rocket, and s is the distance of the rocket from the
center of the planet. In particular, from F � ma, we obtain

(4.39) a � � G
M
s2 �

and equation 4.37 becomes

(4.40)
1
2

v2 � � GM � s � 2ds � GMs � 1 � C �
At liftoff, s � R and v � v0, and we find

(4.41) C � 1
2

v2
0 � GMR � 1 �

and thus the velocity and distance of the rocket at any future time satisfy the relation

(4.42) v2 � 2GM
s

� v2
0 � 2GM

R
�

The rocket will escape the planet if this is always positive, so we must insure that v0 �
�

2GM � R. In
particular, if the planet is earth, then GM � R2 � g � 32 ft/sec2, and R � 3900 miles. Converting to miles
and hours, we find that the initial velocity must be approximately 24,750 mph for the rocket to escape
the earth.

�
4.3. Area and Definite Integrals

In the preceding sections we followed the thinking and methods of Newton on integrations. As in Chap-
ter 1, we now turn to Leibniz for his ideas on the subject. For Leibniz, integration is a method of
accumulation; or of approximation and accumulation, to be more precise. To fix the ideas, we start with
the calculation of area under a curve. Suppose that y � f � x � is a non-negative function defined on the
interval � a � b ����� x;a � x � b � . We want to find the area of the region bounded by the curve, the x-axis
and the lines x � a, x � b. If we pick some point c between a and b, then we know that the area under
the curve y � f � x � and over the interval � a � b � is the sum of the areas over the intervals � a � c � and � c � b � .
In fact, if we cut the interval � a � b � into any number of little intervals, the area of the whole is the sum
of the areas over all the little intervals. Now, if the little intervals are small enough, and if the function
is continuous, then the area over that interval is approximately equal to the area of the column over that
interval of height f � c � , for some c in the interval. See figure 4.1 for a graphic of this process.

Leibniz’ notation for this approximation is

(4.43)
b

∑
a

f � x � ∆x
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Figure 4.1

PSfrag replacements

a
b

y � f
�
x �

a b
y f x

Figure 4.2

PSfrag replacements

a
b

y f x

a b

y � f
�
x �

where ∆x represents the length of the base of a typical column, f � x � its height, and the symbol ∑ indicates
that we add all these together. Here is where Leibniz takes the great leap: suppose the little intervals are
of infinitesimal length; that is ∆x is the infinitesimal dx. Then this “approximation” is precise, and we
obtain the actual area of the figure, denoted by

(4.44) � b

a
f � x � dx �

Now, there are many processes besides that of calculating area (as we shall see in the next chapter) which
have this accumulative property: that the whole is the sum of its parts, and we can calculate the value on
the whole by adding the values of all of its parts. Thus, Leibniz goes on to discuss this process for any
function y � f � x � .
Definition 4.2 Let y � f � x � be a function defined on the interval � a � b � . The definite integral is defined
as follows. A partition of the interval is any increasing sequence

(4.45) � a � x0 � x1 � � � � � xn � 1 � xn � b �
of points in the interval. The corresponding approximating sum is

(4.46)
n

∑
1

f � x �i � ∆xi

where ∆xi is the length xi � xi � 1 of the ith interval, x �i is any point on that interval, and ∑ indicates that
we add all these products together (see figure 4.2). If these approximating sums approach a limit as the
partition becomes increasingly fine (the lengths of the little intervals go to zero), this limit is the definite
integral of f over the interval � a � b � , denoted

(4.47) � b

a
f � x � dx �

This definition raises some serious questions. Let’s return to the calculation of area. Surely, as we
have observed, if the interval ∆x is small enough, then the term f � x � � ∆x is within a very small error of
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the actual area over the interval. But now we add together a large number of these approximations, and
so the errors add. How do we know that the accumulated error is not fatal? This issue also took several
centuries to be satisfactorily resolved; for us it is enough to know that it does work:

Theorem 4.2 If y � f � x � is a continuous function on the interval � a � b � , then the integral � b
a f � x � dx exists.

If f is a nonnegative function, this integral is the area under the curve.

The following properties of the definite integral follow easily from the definition.

Theorem 4.3 Suppose that f and g are continuous functions on the interval � a � b � .
a) � b

a
A f � x � dx � A � b

a
f � x � dx

b) � b

a
� f � x ��� g � x � � dx � � b

a
f � x � dx � � b

a
g � x � dx �

If c is any point in � a � b � :
c) � b

a
f � x � dx � � c

a
f � x � dx � � b

c
f � x � dx �

if f � x � � g � x � for all x in � a � b � , then

d) � b

a
f � x � dx � � b

a
g � x � dx �

In particular, the definite integral of a positive function is positive.
Now the process described in definition 4.2 is almost impossible to carry out in practice (we shall

provide examples in the next section). Fortunately, definite integrals can be calculated using the indefinite
integral, as we now show.

Theorem 4.4 (Fundamental Theorem of the Calculus, I) Suppose that y � f � x � is a continuous func-
tion on the interval � a � b � . If F is any indefinite integral of f , then

(4.48) � b

a
f � x � dx � F � b � � F � a � �

We see this by looking at the accumulation process dynamically: we calculate the definite integral
by accumulating from left to right. For any x in the interval, let I � x � be the value of the definite integral
from a to x. Now, if we go slightly further, say, to x � ∆x, then, by the defining process, f � x � ∆x is an
approximation to the increment in I:

(4.49) ∆I � I � x � ∆x � � I � x � � f � x � ∆x approximately �
Now, moving to a differential increment, we obtain the equality

(4.50) dI � f � x � dx
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so I is an indefinite integral of f . Thus I � x ��� F � x ��� C, for some constant C. Since I � a � � 0,

(4.51) 0 � F � a ��� C � so C � � F � a �
so that I � x � � F � x � � F � a � for all x. In particular, evaluating at x � b gives us 4.48. In the above
argument, we used I to represent � x

a f � t � dt. Putting this in equation 4.49 gives the second version of the
fundamental theorem of the Calculus:

Theorem 4.5 (Fundamental Theorem of the Calculus, II)
d
dx

� x

a
f � t � dt � f � x � �

If we divide both sides of equation 4.49 by ∆x, we get

(4.52)
∆I
∆x

� f � x � approximately �
Then, in the limit dI � dx � f � x � , but I � � x

a f � t � dt. So, to calculate a definite integral � b
a f � x � dx, follow

these steps:

1. Find an indefinite integral F for f ;
2. Evaluate F � b � � F � a � .

In actual calculations it is customary and convenient to use the notation F � x ��� ba as an intermediary be-
tween these two steps.

Example 4.15 � 3

1
x2dx � x3

3

��� 3
1
� 33

3
� 13

3
� 8

In the first step we found the indefinite integral x3 � 3, and in the second, evaluated it at 3 and 1, and
took the difference.

Example 4.16 Find the area under the curve y � sinx between x � π � 6 and x � π � 3 (see Figure 4.3).

Figure 4.3

PSfrag replacements
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8

(4.53) � π � 3
π � 6 sinxdx � � � cosx � ��� π � 3� π � 6 � � cos � π

6 � ���	� cos � π
3 ��� �	� 3 � 1

2
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In general, the way to find the area of a region is this. Sketch the region under consideration. Choose
a direction in which to accumulate the area. Write down the expression for the differential increment in
area: dA � L � x � dx � where dx is an infinitesimal increment in the direction of accumulation, and L � x � is
the length of the column over that increment.

Example 4.17 Find the area of the region bounded by the line x � 0 and the curves C1 : y � 9 � x2 � C2 :
y � x � 3 � x � .

The sketch of this region is given in figure 4.4.

Figure 4.4

PSfrag replacements
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Here we will accumulate area in the direction of the x-axis from x � 0 to x � 3. At a particular value
of x, the length of the column is the difference of the values of y on the two curves. Express this in terms
of x:

(4.54) dA ��� � 9 � x2 � � x � 3 � x � � dx

Thus, the area is given by the integral

� 3

0
� � 9 � x2 � � x � 3 � x � � dx � � 3

0

�
9 � x2 � 3x � x2 � dx � � 3

0
� 9 � 3x � dx(4.55)

� � 9x � 3
2

x2 � ��� 3
0
��� 9 � 3 � � 3

2
32 � � 0 � 27

2

Example 4.18 Find the area of the region bounded by the curves x � � y2, x � y2, y � � 2 and y � 2.
See figure 4.5 for the sketch. Here we choose to accumulate area in the y direction. The infinitesimal

increment at a particular value of y is

(4.56) dA ��� y2 ��� � y2 	
	 dy � 2y2dy �
Thus

(4.57) A � � 2� 2
2y2dy � 2

3
y3
��� 2� 2

� 2
3

23 � �
2
3
� � 2 � 3 � � 32

3
�



Chapter 4 Integration 52

Figure 4.5
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Example 4.19 Find the area between the curve y � x � x2 � 1 and the x-axis, from x � 0 to x � 3 (see
Figure 4.6).

Figure 4.6
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Here dA � x � x2 � 1dx, so the area is � 3
0 x � x2 � 1dx. We integrate by using the substitution u �

x2 � 1 � du � 2xdx. When x � 0 � u � 1, and when x � 3 � u � 10. The area is

(4.58) � 3

0
x
�

x2 � 1dx � 1
2
� 10

1
u1 � 2du � 1

2
2
3

u3 � 2 ��� 10

1
� 1

3
� 10 � 10 � 1 �

Notice, that when we make a substitution in a definite integral, we also replace the limits of inte-
gration by the values of the new variable at the endpoints. In this way the computation is easier than
resubstituting back at the end.

Example 4.20 An object moves along the x-axis so that its velocity at time t is v � t � � t � t2 � 1 � 5. If the
object is at the origin at time t � 0, at what point is it at time t � 1? At time t � 2?

Notice that the velocity is negative until t � 1, so the object starts moving to the left, but at t � 1
turns around and moves to the right. No matter; its position is still given by the definite integral:

(4.59) x � 1 �� � 1

0
vdt � � 1

0
t � t2 � 1 � 5dt
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Make the substitution u � t2 � 1 � du � 2dt. When t � 0 � u � � 1, and when t � 1 � u � 0, so

(4.60) x � 1 �� 1
2
� 0� 1

u5du � 1
12

u6
��� 0� 1

� � 1
12

For t � 2, we have u � 3, so

(4.61) x � 2 �� 1
2
� 3� 1

u5du � 1
12

u6
��� 3� 1

� 1
12

� 36 � 1 � �

�
4.4. Summation and the Definite Integral

In this section we shall make the definition of the definite integral precise, and shall do some computa-
tions directly from the definition. The purpose here is to emphasize that the definite integral represents a
process of accumulation, and to introduce and work with the notation for summation.

Let n be a positive integer, and a � k � a rule that assigns a number to each integer between 1 and n. For
example:

(4.62) a � k � � 1 f or all k ; or a � k � � 2k � 3 ; or a � k � � k2 ; or a � k � � 3
k

�
for k running from 1 to n � 100. The sum of all these numbers is denoted

(4.63)
n

∑
k � 1

a � k � � a � 1 ��� a � 2 ��� � � � � a � n � �
This sum can sometimes be easily expressed as a formula in n; more often this is difficult, or impos-

sible. For example, the sums in the first three cases are, respectively

(4.64) n ; n � n � 4 � ;
n � n � 1 � 2n � 1 �

6
�

whereas a formula for the sum in the fourth case is not known. These formulas are not easy to come by,
and usually rely on clever tricks. Here are the cases we will need for application to integration.

Proposition 4.5

a) Z � n � � n

∑
1

1 � 1 � 1 � � � � � 1 � n

b) U � n ��� n

∑
1

k � 1 � 2 � � � � � n � n � n � 1 �
2

c) S � n ��� n

∑
1

k2 � 12 � 22 � � � � � n2 � n � n � 1 � � 2n � 1 �
6

d) K � n � � ∑n
1 k3 � 13 � 23 � � � � � n3 � �

n � n � 1 �
2 � 2
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4.4 is just the obvious statement that the sum of n ones is n. To show 4.4 we start with the observation
that

(4.65) � k � 1 � 2 � k2 � 2k � 1

Now add these all together from k � 1 to k � n � 1. On the left hand side we get the sum of all the
squares from 22 to n2, or S � n � � 12. The sum of the first terms on the right hand side is S � n � 1 � , of the
second is 2U � n � 1 � and the last contributes n � 1. Thus

(4.66) S � n � � 1 � S � n � 1 ��� 2U � n � 1 ��� n � 1 or 2U � n � 1 � � S � n � � S � n � 1 � � n �
Now add 2n to both sides, and remember that S � n � � S � n � 1 ��� n2:

(4.67) 2U � n ��� n2 � n �
which gives 4.4. For 4.4 (and subsequently 4.4, and all higher powers), we use the same idea. Start with

(4.68) � k � 1 � 3 � k3 � 3k2 � 3k � 1

Add these all together from k � 1 to k � n � 1, and calculate each term as above to get:

(4.69) K � n � � 1 � K � n � 1 ��� 3S � n � 1 ��� 3U � n � 1 ��� n � 1 �
We know U � n � 1 � from a), and K � n � � K � n � 1 � � n3, so we get:

(4.70) 3S � n � 1 � � n3 � 3
� n � 1 � n

2
� n

Now add 3n2 to both sides, to get 3S � n �� n3 � 3
2 n2 � 3

2 n � n � 3n2 From which 4.4 follows. To derive
4.4 we must employ the fourth powers in the same way.

Example 4.21 The sum of the first n odd integers is n2. We see this using 4.4. The first n odd integers
are the numbers 1 � 3 � 5 � � � � � 2n � 1. The kth odd integer is 2k � 1. Thus the sum of the first n odd integers
is

(4.71)
n

∑
1
� 2k � 1 � � 2 � n

∑
1

k � � n

∑
1

1 � � n � 1 � n � n � n2 �

Sometimes to find the sum of a collection of numbers it helps to write out the first few terms.

Example 4.22 Find
15

∑
3
� k � 1 � � k � 1 � � 1 � .

The sum of the first two terms is � 1 � 3 � 1 � 4 � � � 1 � 4 � 1 � 5 � � 1 � 3 � 1 � 5 Then the sum of the first
three terms is � 1 � 3 � 1 � 5 � � � 1 � 5 � 1 � 6 ��� 1 � 3 � 1 � 6. Notice the cancellation. This will happen at each
stage, because each time the first term added is the same as the last subtracted. We conclude

(4.72)
15

∑
3
� k � 1 � � k � 1 � � 1 �� 1 � 3 � 1 � 16 �
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Now let us return to the definition of the definite integral. Let y � f � x � be a continuous function on
the interval � a � b � . Select n � 1 points between a and b: a � x0 � x1 � � � � � xn � 1 � xn � b. This is a
partition P of the interval � a � b � . The size of the partition is the maximum difference between consecutive
points, denoted �P � . For the sum (called the Riemann sum of the function over the partition)

(4.73) ∑
P

f � x � ∆x � n

∑
1

f � x �k � � xk � xk � 1 �
where x �k is any point in the interval between xk � 1 and xk.

Definition 4.3 The function f is integrable over the interval � a � b � if the Riemann sums converge. That
is, there is a number L for which the following condition can be verified. Given any ε � 0, there is a

δ � 0 such that if the partition satisfies �P � � δ , then
��� ∑

P
f � x � ∆x � L

��� � ε � L is the integral, denoted

� b

a
f � x � dx.

Now, we have already observed that all continuous functions are integrable, and we have discovered
that the value of the integral is found by evaluating an indefinite integral. However, historically, the
above definition (for area) was formulated, in a somewhat vaguer sense, long before the Calculus. And
areas were calculated by actually finding this limit. In the sixteenth century Cavalieri succeeded in doing
this for the functions y � xp over the interval � 0 � 1 � for all values of p from 1 to 9. This was a huge effort;
completely replaced by one-line calculations using the calculus. Here is how Cavalieri proceeded.

Take the particular partition

(4.74) P : 0 �
1
n �

2
n � � � � �

n � 1
n �

n
n
� 1 �

Here xk � k � n. Form the Riemann sum with x �k taken to be xk:

(4.75) ∑
P

xp∆x � n

∑
1

�
k
n � p �

k
n
� � k � 1 �

n � � n

∑
1

�
k
n � p �

1
n � � 1

np � 1

n

∑
1

kp

Now, for p � 1, we obtain

(4.76) ∑
P

x∆x � 1
n2

n � n � 1 �
2

� 1
2
� 1

2n

which converges to 1 � 2 as n � ∞. Thus the limit exists, and we can conclude that

(4.77) � 1

0
xdx � 1

2
�

For p � 2 we obtain

(4.78) ∑
P

x2∆x � 1
n3

n � n � 1 � � 2n � 1 �
6

� 2n3 � 3n2 � n
6n3

which converges to 1/3. Thus, taking the limit, we have

(4.79) � 1

0
x2dx � 1

3
�


