
VII. Techniques of Integration

Integration, unlike differentiation, is more of an art-form than a collection of algorithms. Many
problems in applied mathematics involve the integration of functions given by complicated formu-
lae, and practitioners consult a Table of Integrals in order to complete the integration. There are
certain methods of integration which are essential to be able to use the Tables effectively. These
are: substitution, integration by parts and partial fractions. In this chapter we will survey these
methods as well as some of the ideas which lead to the tables. After the study of this material,
students should be able to easily use any set of Integral Tables.

7.1 Substitution

This was introduced in section 4.1 (recall Proposition 4.5). To integrate a differential f(x)dx which
is not known to us, we seek a function u = u(x) so that the given differential can be rewritten as
a differential g(u)du whose integral is known to us. Then, if

∫
g(u)du = G(u) + C, we know that∫

f(x)dx = G(u(x)) + C. Finding and employing the function u often requires some experience
and ingenuity as the following examples show.

Example 7.1.
∫

x
√

2x + 1dx = ?

Let u = 2x + 1, so that du = 2dx and x = (u− 1)/2. Then∫
x
√

2x + 1dx =
∫

u− 1
2

u1/2 du

2
=

1
4

∫
(u3/2 − u1/2)du ==

1
4
(
2
5
u5/2 − 2

3
u3/2) + C

=
1
30

u3/2(3u− 5) + C =
1
30

(2x + 1)3/2(6x− 2) + C =
1
15

(2x + 1)3/2(3x− 1) + C ,

where at the end we have replaced u by 2x + 1.

Example 7.2.
∫

tanxdx =?

Since this isn’t on our tables, we revert to the definition of the tangent: tanx = sinx/ cos x. Then,
letting u = cos x, du = − sinxdx we obtain∫

tanxdx =
∫

sinx

cos x
dx = −

∫
du

u
= − lnu + C = − ln cos x + C = ln sec x + C .

Example 7.3.
∫

sec xdx =?

This is tricky, and there are several ways to find the integral. However, if we are guided by the
principle of rewriting in terms of sines and cosines, we are led to the following:

sec x =
1

cos x
=

cos x

cos2 x
=

cos x

1− sin2 x
.

Now we can try the substitution u = sinx, du = cos xdx. Then∫
sec xdx =

∫
du

1− u2
.
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This looks like a dead end, but a little algebra pulls us through. The identity

1
1− u2

=
1
2
( 1
1 + u

+
1

1− u

)
leads to ∫

du

1− u2
dx =

1
2

∫ ( 1
1 + u

+
1

1− u

)
du =

1
2
(ln(1 + u)− ln(1− u) + C .

Using u = sinx, we finally end up with∫
sec xdx =

1
2
(ln(1 + sin x)− ln(1− sinx) + C =

1
2

ln(
1 + sin x

1− sinx
) + C .

Example 7.4. As a circle rolls along a horizontal line, a point on the circle traverses a curve called
the cycloid. A loop of the cycloid is the trajectory of a point as the circle goes through one full
rotation. Let us find the length of one loop of the cycloid traversed by a circle of radius 1.

Let the variable t represent the angle of rotation of the circle, in radians, and start (at t = 0) with
the point of intersection P of the circle and the line on which it is rolling. After the circle has
rotated through t radians, the position of the point is as given as in figure 7.1.

Figure 7.1

1
1

t

t

1 � cos t

t � sin t
P

The point of contact of the circle with the line is now t units to the right of the original point of
contact (assuming no slippage), so

x(t) = t− sin t , y(t) = 1− cos t .

To find arc length, we use ds2 = dx2 + dy2, where dx = (1− cos t)dt, dy = sin tdt. Thus

ds2 = ((1− cos t)2 + sin2 t)2dt2 = (2− 2 cos t)2dt2

so ds =
√

2(1− cos t)dt, and the arc length is given by the integral

L =
√

2
∫ 2π

0

√
1− cos tdt .
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To evaluate this integral by substitution, we need a factor of sin t. We can get this by multiplying
and dividing by

√
1 + cos t:

√
1− cos t =

√
1− cos2 t√
1 + cos t

=
| sin t|√
1 + cos t

.

By symmetry around the line t = π, the integral will be twice the integral from 0 to π. In
that interval, sin t is positive, so we can drop the absolute value signs. Now, the substitution
u = 1 + cos t, du = − sin tdt will work. When t = 0, u = 2, and when t = π, u = 0. Thus

L = −2
√

2
∫ π

0

sin tover1 + cos tdt = −2
√

2
∫ 0

2

u−1/2du = 2
√

2
∫ 2

0

u−1/2du = 2
√

2(2u1/2)
∣∣2
0

= 8 .

Problems 7.1. Evaluate the Integrals.

1.

∫ 2

0

x

1 + x4
dx

2.

∫
dx

(1 + x)
√

x

3.

∫
2 + x

1 + x
dx

4.

∫
xdx

1 + 4x2
=

5.

∫ 2

0

ex

1 + e2x
dx

6.

∫
arccos x√

1− x2
dx

7.

∫
(lnx + 1)2

x
dx

8.

∫
cos3 x sin2 xdx

9.

∫ 2

0

(x2 + 3x− 1)2(2x + 3)dx
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10.

∫ 2

0

dx

x2 + 4x + 5

11.

∫ 2

0

xdx

1 + 4x2
=

12.

∫ 2

0

dx

1 + 4x2
=

13.

∫
exdx

e2x + 1
=

14.

∫
dx

ex + e−x
=

15.

∫
dx√

5− 4x− x2
=

16.

∫
tan2 xdx =

17.

∫
tan3 xdx =

18.

∫
dx

x2 − 6x + 13
=

7.2 Integration by Parts

Sometimes we can recognize the differential to be integrated as a product of a function that is
easily differentiated and a differential that is easily integrated. For example, if the problem is to
find

(7.1)
∫

x cos xdx

then we can easily differentiate f(x) = x, and integrate cos xdx separately. When this happens,
the integral version of the product rule, called integration by parts, may be useful, because it
interchanges the roles of the two factors.

Recall the product rule: d(uv) = udv + vdu, and rewrite it as

(7.2) udv = d(uv)− vdu
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In the case of (7.1), taking u = x, dv = cos xdx, we have du = dx, v = sinx. Put this all in (7.2):

x cos xdx = d(x sinx)− sinxdx ,

and we can easily integrate the right hand side to obtain∫
x cos xdx = x sinx−

∫
sinxdx = x sinx + cos x + C .

7.1 Proposition (Integration by Parts). For any two differentiable functions u and v:

(7.3)
∫

udv = uv −
∫

vdu .

To integrate by parts:

1. First identify the parts by reading the differential to be integrated as the product of a
function u easily differentiated, and a differential dv easily integrated.

2. Write down the expressions for u, dv and du, v.

3. Substitute these epxressions in (7.3).

4. Integrate the new differential vdu.

Example 7.5. Find
∫

xexdx.

Let u = x, dv = exdx. Then du = dx, v = ex. (7.3) gives us∫
xexdx = xex −

∫
exdx = xex − ex + C .

Example 7.6. Find
∫

x2exdx.

The substitution u = x2, dv = exdx, du = 2xdx, v = ex doesn’t immediately solve the problem,
but reduces us to example 7.5:∫

x2exdx = x2ex − 2
∫

xexdx = x2ex − 2(xex − ex + C) = x2ex − 2xex + 2ex + C .

Example 7.7. To find
∫

lnxdx, we let u = ln x, dv = dx, so that du = (1/x)dx, v = x, and∫
lnxdx = x lnx−

∫
x

1
x

dx = x lnx−
∫

dx = x lnx− x + C .

This same idea works for arctanx: Let

u = arctan x, dv = dx du =
dx

1 + x2
, v = x ,
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and thus ∫
arctanxdx = x arctanx−

∫
x

1 + x2
dx = x arctanx− 1

2
ln(1 + x2) + C ,

where the last integration is accomplished by the new substitution u = 1 + x2, du = 2xdx.

Example 7.8. These ideas lead to some clever strategies. Suppose we have to integrate ex cos xdx.
We see that an integration by parts leads us to integrate ex sinxdx, which is just as hard. But
suppose we integrate by parts again? See what happens:

Letting u = ex, dv = cos xdx, du = exdx, v = sinx, we get

(7.4)
∫

ex cos xdx = ex sinx−
∫

ex sinxdx .

Now integrate by parts again: letting u = ex, dv = sinxdx, du = exdx, v = − cos x, we get∫
ex sinxdx = ex cos x +

∫
ex cos xdx .

Inserting this in (7.4) leads to∫
ex cos xdx = ex sinx− ex cos x−

∫
ex cos xdx .

Bringing the last term over to the left hand side and dividing by 2 gives us the answer:∫
ex cos xdx =

1
2
(ex sinx− ex cos x) + C .

Example 7.9. If a calculation of a definite integral involves integration by parts, it is a good idea
to evaluate as soon as integrated terms appear. We illustrate with the calculation of∫ 4

1

lnxdx

Let u = ln xdx, dv = dx so that du = dx/x, v = x, and∫ 4

1

lnxdx = x lnx
∣∣4
1
−

∫ 4

1

dx = 4 ln 4− x
∣∣4
1

= 4 ln 4− 3 .

Example 7.10.

∫ 1/2

0

arcsinxdx = ?

We make the substitution u = arcsinx, dv = dx, du = dx/
√

1− x2, v = x. Then∫ 1/2

0

arcsinxdx = x arcsin x
∣∣1/2

0
−

∫ 1/2

0

xdx√
1− x2

.
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Now, to complete the last integral, let u = 1− x2, du = −2xdx, leading us to∫ 1/2

0

arcsin xdx =
1
2
(
π

6
) +

1
2

∫ 3/4

1

u−1/2du =
π

12
+ u1/2

∣∣3/4

1
=

π

12
+
√

3
2
− 1 .

Problems 7.2. Evaluate the Integrals.

1.

∫
x(sinx)dx

2.

∫
exxdx

3.

∫
x ln(2x)dx

4.

∫
ln(2x)

x
dx

5.

∫
tan2 xdx

6.

∫
x(e2x + 1)dx

7.

∫
x2 sinxdx

8.

∫
(lnx)2dx .

9.

∫
x2 lnxdx .

10.

∫
arccos xdx .

11. If the region in the first quadrant bounded by the curves y = 1, y = ex and x = 1 is rotated
about the y-axis, what is the volume of the resulting solid?

12.

∫
sec3 xdx .
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7.3. Partial Fractions

The point of the partial fractions expansion is that integration of a rational function can be reduced
to one or more of the following formulae, once we have determined the roots of the polynomial in
the denominator.

7.3. Proposition. a)
∫

dx

x− a
= ln |x− a|+ C ,

b)
∫

du

u2 + b2
=

1
b

arctan(
u

b
) + C ,

c)
∫

udu

u2 + b2
=

1
2

ln(u2 + b2) + C .

These are easily verified by differentiating the right hand sides (or by using previous techniques).

Example 7.11. Let us illustrate with an example we’ve already seen (for example, in example
7.3). To find the integral ∫

dx

(x− a)(x− b)

we check that

(7.5)
1

(x− a)(x− b)
=

1
a− b

( 1
x− a

− 1
x− b

)
,

so that ∫
dx

(x− a)(x− b)
=

1
a− b

(
ln |x− a| − ln |x− b|) + C =

1
a− b

ln |x− a

x− b
|+ C .

The algebraic manipulation in (7.5) can be applied to any rational function. Any polynomial can
be written as a product of factors of the form x− r or (x− a)2 + b2, where r is a real root and the
quadratic terms correspond to the conjugate pairs of complex roots. The partial fraction expansion
allows us to write the quotient of polynomials as a sum of terms whose denominators are of these
forms, and thus the integration is reduced to Proposition 7.3.

Here is the partial fractions procedure.

1. Given a rational function R(x), if the degree of the numerator is not less than the degree
of the denominator, by long division, we can write

R(x) = Q(x) +
p(x)
q(x)

where now deg p < deg q.
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2. Find the roots of q(x) = 0. If the roots are all distinct (that is, there are no multiple roots),
express p/q as a sum of terms of the form

(7.6)
p(x)
q(x)

=
A

x− r
,

B

(x− a)2 + b2
,

Cx

(x− a)2 + b2
.

3. Find the values of A, B, C, . . .. This is done putting the expression on the right hand side
over a common denominator, and then equating coefficients of the numerators in the equation.

4. Integrate term by term using Proposition 7.3.

If the roots are not distinct, the expansion is more complicated; we shall resume this discussion
later. For the present let us concentrate on the case of distinct roots, and how to find the coefficients
A,B,C, . . . in (7.6).

Example 7.12. Integrate ∫
xdx

(x− 1)(x− 2)
.

First we write

(7.7)
x

(x− 1)(x− 2)
=

A

x− 1
+

B

x− 2
.

Now multiply this equation by (x− 1)(x− 2), getting

x = A(x− 2) + B(x− 1) .

If we substitute x = 1, we get 1 = A(1− 2), so A = −1; now letting x = 2, we get 2 = B(2− 1, so
B = 2, and (7.7) becomes

x

(x− 1)(x− 2)
=

−1
x− 1

+
2

x− 2
.

Integrating, we get∫
xdx

(x− 1)(x− 2)
= − ln |x− 1|+ 2 ln |x− 2|+ C = ln

(x− 2)2

|x− 1|
+ C .

So, this is the procedure for finding the coefficients of the partial fractions expansion when the
roots are all real and distinct:

1. Write down the expansion with unknown coefficients.

2. Multiply through by the product of all the terms x− r.

3. Substitute each root in the above equation; each substitution determines one of the coeffi-
cients.

Example 7.13. Integrate ∫
(x2 − 3)dx

(x2 − 1)(x− 3)
.

144



Here the roots are ±1, 3, so we have the expansion

(7.8)
x2 − 3

(x2 − 1)(x− 3)
=

A

x + 1
+

B

x− 1
+

C

x− 3

leading to
x2 − 3 = A(x− 1)(x− 3) + B(x + 1)(x− 3) + C(x + 1)(x− 1) .

Substitute x = −1 : 1− 3 = A(−2)(−4), so A = −1/4.

Substitute x = 1 : 1− 3 = B(2)(−2), so B = 1/2.

Substitute x = 3 : 9− 3 = C(4)(2), so C = 3/4, and (7.8) becomes

x2 − 3
(x2 − 1)(x− 3)

= (−1
4
)

1
x + 1

+ (
1
2
)

1
x− 1

+ (
3
4
)

1
x− 3

,

and the integral is∫
(x2 − 3)dx

(x2 − 1)(x− 3)
= −1

4
ln |x + 1|+ 1

2
ln |x− 1|+ 3

4
ln |x− 3|+ C .

Quadratic Factors

Example 7.14.

∫
dx

x2 − 4x− 5
= ?

Here we can factor: x2 − 4x− 5 = (x + 1)(x− 5), so we can write

1
x2 − 4x− 5

=
A

x + 1
+

B

x− 5

and solve for A and B as above: A = 1/6, B = −1/6, so we have

1
x2 − 4x− 5

=
1
6
(

1
x− 5

− 1
x + 1

)

and the integral is ∫
dx

x2 − 4x− 5
=

1
6

ln |x− 5
x + 1

|+ C .

Example 7.15.

∫
dx

x2 − 4x + 5
= ?

Here we can’t find real factors, because the roots are complex. But we can complete the square:
x2 − 4x + 5 = (x− 2)2 + 1, and now use Proposition (7.3 b):∫

dx

x2 − 4x + 5
=

∫
dx

(x− 2)2 + 1
= arctan(x− 2) + C .
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Example 7.16.

∫
(x + 3)dx

x2 − 4x + 5
= ?

Here we have to be a little more resourceful. Again, we complete the square, giving

x + 3
x2 − 4x + 5

=
x + 3

(x− 2)2 + 1
.

If only that x + 3 were x− 2, we could use Proposition 7.3c, with u = x− 2. Well, since x + 3 =
x− 2 + 5, there is no problem:∫

(x + 3)dx

x2 − 4x + 5
=

∫
(x− 2)dx

(x− 2)2 + 1
+

∫
5dx

(x− 2)2 + 1
=

1
2

ln((x− 2)2 + 1) + 5 arctan(x− 2) + C .

Example 7.17.

∫
(2x + 1)dx

x2 − 6x + 14
= ?

First, we complete the square in the denominator: x2 − 6x + 14 = (x − 3)2 + 5. Now, write the
numerator in terms of x− 3 : 2x + 1 = 2(x− 3) + 7. This gives the expansion:

(2x + 1)dx

x2 − 6x + 14
=

7
(x− 3)2 + 5

+ 2
x− 3

(x− 3)2 + 5

so, using Proposition 7.3:∫
(2x + 1)dx

x2 − 6x + 14
= 7

∫
dx

(x− 3)2 + 5
+ 2

∫
(x− 3)dx

(x− 3)2 + 5

=
7√
5

arctan
x− 3√

5
+ ln((x− 3)2 + 5) + C .

Example 7.18.

∫
(x + 1)dx

x(x2 + 1)
= ?

Here we have to expect each of the terms in Proposition 7.3 to appear, so we try an expression of
the form

(7.9)
x + 1

x(x2 + 1)
=

A

x
+

B

x2 + 1
+

Cx

x2 + 1
.

Clearing the denominators on the right, we are led to the equation

(7.10) x + 1 = A(x2 + 1) + Bx + Cx2 .

Setting x = 0 gives 1 = A. But we have no more roots to substitute to find B and C, so instead we
equate coefficients. The coefficient of x2 on the left is 0, and on the right is A + C, so A + C = 0;
since A = 1, we learn that C = −1. Comparing coefficients of x we learn that 1 = B. Thus (7.9)
becomes

x + 1
x(x2 + 1)

=
1
x

+
1

x2 + 1
− x

x2 + 1
,
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and our integral is ∫
(x + 1)dx

x(x2 + 1)
= ln |x|+ arctanx− 1

2
ln(x2 + 1) + C .

Example 7.19.

∫
(x2 + 1)dx

x(x2 − 4x + 5)
= ?

The denominator is x((x− 2)2 + 1), so we expect a partial fractions expansion of the form

(7.11)
x2 + 1

x(x2 − 4x + 5)
=

A

x
+

B

(x− 2)2 + 1
+

C(x− 2)
(x− 2)2 + 1

.

Clearing of denominators, we obtain the equation

x2 + 1 = A((x− 2)2 + 1) + Bx + C(x− 2)x .

For x = 0, we obtain 1 = A(5), so A = 1/5. Comparing coefficients of x2 we obtain 1 = A + C, so
C = −1/5. Comparing coefficients of x we obtain 0 = −4A + B − 2C, so 0 = −4/5 + B + 2/5, so
B = 2/5 and (7.11) becomes

x2 + 1
x(x2 − 4x + 5)

= (
1
5
)
1
x

+ (
2
5
)

1
(x− 2)2 + 1

− (
1
5
)

x− 2
(x− 2)2 + 1

,

which we can integrate to∫
(x2 + 1)dx

x(x2 − 4x + 5)
=

1
5

ln |x|+ 2
5

arctan(x− 2)− 1
10

ln(x2 − 4x + 5) + C .

Multiple Roots

If the denominator has a multiple root, that is, there is a factor x− r raised to a power, then we
have to allow for the possibility of terms in the partial fraction of the form 1/(x − r) raised to
the same power. But then the numerator can be (as we have seen above in the case of quadratic
factors) a polynomial of degree as much as one less than the power. This is best explained through
a few examples.

Example 7.20.

∫
(x2 + 1)dx

x3(x− 1)
= ?

We have to allow for the possibility of a term of the form (Ax2 +Bx+C)/x3, or, what is the same,
an expansion of the form

(7.12)
x2 + 1

x3(x− 1)
=

A

x
+

B

x2
+

C

x3
+

D

x− 1
.

Clearing of denominators, we obtain

x2 + 1 = Ax2(x− 1) + Bx(x− 1) + C(x− 1) + Dx3 .
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Substituting x = 0 we obtain 1 = C(−1), so C = −1. Substituting x = 1, we obtain 2 = D. To
find A and B we have to compare coefficients of powers of x. Equating coefficients of x3, we have
0 = A + D, so A = −2. Equating coeffients of x2, we have 1 = −A + B, so B = 1 + A = −1. Thus
the expansion (7.12) is

x2 + 1
x3(x− 1)

= − 2
x
− 1

x2
− 1

x3
+

2
x− 1

,

which we can integrate term by term:∫
(x2 + 1)dx

x3(x− 1)
= −2 ln |x|+ 1

x
+

1
2x2

+ 2 ln |x− 1|+ C .

If the denominator has a quadratic factor raised to a power, the situation becomes much more
complicated. If the quadratic factor has real roots, we can solve by partial fractions; otherwise we
need to turn to the methods of the next section.

Example 7.21.

∫
dx

(1− x2)2
= ?

Noting that 1− x2 = (1− x)(1 + x) we seek an expansion of the form

(7.13)
1

(1− x2)2
=

A

1− x
+

B

(1− x)2
+

C

1 + x
+

D

(1 + x)2
.

Clearing of denominators:

1 = A(1− x)(1 + x)2 + B(1 + x)2 + C(1− x)2(1 + x) + D(1− x)2 .

Evaluating at x = 1, we get B = 1/4; at x = −1, D = 1/4. Equating constant terms: 1 =
A + B + C + D, and equating the coefficients of x3 gives −A + C = 0, so all coefficients are equal
to 1/4. Now we easily integrate

(7.14)
∫

dx

(1− x2)2
=

1
4
(− ln(1−x)+

1
1− x

+ln(1+x)− 1
1 + x

) =
1
4

ln(
1 + x

1− x
)+

1
2
(

x

1− x2
)+C .

Problems 7.3 Evaluate the Integrals.

1.

∫
dx

x2(x + 2)

2.

∫
2 + x

1 + x
dx

3.

∫ 4

2

dx

x(x− 1)

4.

∫ 2

1

x2 − 4x + 1
x(x− 4)2

dx
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5.

∫ 4

2

dx

x2 − 1

6.

∫ 2

1

dx

x2(x + 1)

7.

∫
dx

x(x− 1)(x + 2)

8.

∫ 4

2

dx

x(x− 1)2

9.

∫
dx

x2(x− 1)

10.

∫
dx

x(x2 + 4x + 5)
=

11.

∫
(x + 1)dx

x(x + 3)
.

12.

∫
(x + 1)dx

x2(x + 3)
.

13.

∫
dx

(x− 1)(x + 2)2
.

14.

∫
(x2 − 1)dx

(x2 + 1)(x + 3)
.

15.

∫
x2dx

(1− x2)2
.

7.4 Trigonometric Methods

Now, although the above techniques are all that one needs to know in order to use a Table of
Integrals, there is one form which appears so often, that it is worthwhile seeing how the integration
formulae are found. Expressions involving the square root of a quadratic function occur quite
frequently in practice. How do we integrate

√
1− x2 or

√
1 + x2 ?
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When the expressions involve a square root of a quadratic, we can convert to trigonometric functions
using the substitutions suggested by figure 7.2.

Figure 7.2

�
1 � x2

1

1

x x

u u

(A) (B)

�
1 � x2

Example 7.22. To find
∫ √

1− x2dx, we use the substitution of figure 7.2A: x = sinu, dx =
cos udu,

√
1− x2 = cos u. Then ∫ √

1− x2dx =
∫

cos2 udu .

Now, we use the half-angle formula: cos2 u = (1 + cos 2u)/2:∫ √
1− x2dx =

∫
1 + cos 2u

2
du =

u

2
+

sin 2u

4
+ C .

Now, to return to the original variable x, we have to use the double angle formula: sin 2u =
2 sinu cos u = x

√
1− x2, and we finally have the answer:∫ √

1− x2dx =
arcsinx

2
+

x
√

1− x2

4
+ C .

Example 7.23. To find
∫ √

1 + x2dx, we use the substitution of figure 7.2B: x = tanu, dx =
sec2 udu,

√
1 + x2 = sec u. Then ∫ √

1 + x2dx =
∫

sec3 udu .

This is still a hard integral, but we can discover it by an integration by parts (see problem 12 of
section 7.2) to be ∫

sec3 du =
1
2
(sec u tanu + ln | sec u + tanu|) + C .

Now, we return to figure 7.2B to write this in terms of x: tanu = x, sec u =
√

1 + x2 . We finally
obtain ∫ √

1 + x2dx =
1
2
(x

√
1 + x2 + ln |

√
1 + x2 + x|) + C .
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Example 7.24.

∫
x
√

1 + x2dx = ?

Don’t be misled: always try simple substitution first; in this case the substitution u = 1+x2, du =
2xdx leads to the formula∫

x
√

1 + x2dx =
1
2

∫
u1/2du =

2
3
(1 + x2)3/2 + C .

Example 7.25.

∫
x2

√
1− x2dx = ?

Here simple substitution fails, and we use the substitution of figure 7.2A:

x = sinu, dx = cos udu,
√

1− x2 = cos u .

Then ∫
x2

√
1− x2dx =

∫
sin2 u cos2 udu .

This integration now follows from use of double- and half-angle formulae:∫
sin2 u cos2 udu =

1
4

∫
sin2(2u)du =

1
8

∫
(1− cos(4u))du =

1
8
(u− sin(4u)

4
) + C .

Now, sin(4u) = 2 sin(2u) cos(2u) = 4 sinu cos u(1− 2 sin2 u) = 4x
√

1− x2(1− 2x2). Finally∫
x2

√
1− x2dx =

arcsin x

8
+

x
√

1− x2(1− 2x2)
2

+ C .

Example 7.26. Let’s do example 7.21 using these methods. We make the substitution of figure
7.2A: x = sinu, dx = cos udu,

√
1− x2 = cos u, leading to∫
dx

(1− x2)2
=

∫
cos udu

cos4 u
=

∫
sec3 udu ,

which we found in problem 12 of section 7.2 to be

1
2

sec u tanu +
1
4

ln
1 + sin u

1− sinu
+ C .

Substituting back from u to x, using figure 2a, we get (7.14).

Example 7.27.

∫
dx

(1 + x2)2
= ?

We use the substitution of figure 7.2B: x = tan u, dx = sec udu,
√

1 + x2 = sec u This gives∫
dx

(1 + x2)2
=

∫
sec2 udu

sec4 u
=

∫
cos2 udu =

1
2
(u + sinu cos u) + C =

1
2
(arctanx +

x

1 + x2
) + C .

Problems 7.4
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In this problem set, we not only have trigonometric substitutions, but also a variety of problems
using methods from the entire chapter.

1.

∫
x2dx√
9− x2

.

2.

∫
x2dx√
9 + x2

.

3.

∫
(x + 1)x12dx . .

4.

∫
x(x + 1)12dx

5.

∫ e

1

x2 ln(2x)dx .

6.

∫
xdx

(1− x2)2
.

7.

∫
x2dx

(1 + x2)2
.

8.

∫ √
x(x + 1)dx .

9. The curve y = cos x is revolved about the y-axis, for x running from 0 to π/2. Find the volume
of the resulting solid.

10.

∫
x3dx

(1 + x2)
.
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