
VIII. Indeterminate Forms and Improper Integrals

8.1 L’Hôpital’s Rule

In Chapter 2 we intoduced l’Hôpital’s rule and did several simple examples. First we review the
material on limits before picking up where Chapter 2 left off.

Suppose f is a function defined in an interval around a, but not necessarily at a. Then we write

lim
x→a

f(x) = L

if we can insure that f(x) is as close as we please to L just by taking x close enough to a. If f is
also defined at a, and

lim
x→a

f(x) = f(a)

we say that f is continuous at a . If the expression for f(x) is a polynomial, we found limits by
just substituting a for x; this works because polynomials are continuous.

But how do we calculate limits when the expression f(x) cannot be determined at a? For example,
the definition of the derivative:

(8.1) f ′(x) = lim
x→a

f(x)− f(a)
x− a

.

This is an example of an indeterminate form of type 0/0: an expression which is a quotient of two
functions, both of which are zero at a. As for (8.1), in case f(x) is a polynomial, we found the
limit by long division, and then evaluating the quotient at a (see Theorem 1.1). For trigonometric
functions, we devised a geometric argument to calculate the limit (see Proposition 2.7).

For the general expression f(x)/g(x) we have

Proposition 8.1 (l’Hôpital’s Rule). If f and g have continuous derivatives at a and f(a) = 0
and g(a) = 0, then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

.

To see this we use the Mean Value Theorem, theorem 2.4. According to that theorem, we can
write f(x) − f(a) = f ′(c)(x − a) for some c between x and a, and g(x) − g(a) = g′(d)(x − a) for
some d between x and a. Since f(a) = 0 and g(a) = 0, we have

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(c)(x− a)
g′(d)(x− a)

= lim
x→a

f ′(c)
g′(d)

.

But now, by assumption the derivatives f ′ and g′ are continuous. So, since c and d lie between x
and a, f ′(c) and g′(d) have the same limits as f ′(x) and g′(x) as x → a, and thus we can finish
the argument:

lim
x→a

f ′(c)
g′(d)

= lim
x→a

f ′(x)
g′(x)

.
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Example 8.1. lim
x→2

x3 − 3x + 2
tan(πx)

=

After checking that the hypotheses are satisfied, we get

lim
x→2

x3 − 3x + 2
tan(πx)

=l′H lim
x→2

3x2 − 3
π sec2(πx)

=
12− 9

π
=

3
π

.

The second limit can be evaluated since both functions are continuous and the denominator
nonzero.

Example 8.2. lim
x→0

x2 + 2
3x2 + 1

=

Since neither the numerator nor denominator is zero at x = 0, we can just substitute 0 for x,
obtaining 2 as the limit. However if we apply l’Hôpital’s rule without checking that the hypotheses
are satisfied, we get the wrong answer: 1/3.

Example 8.3. lim
x→0

cos(3x)− 1
sin2(4x)

=

Both numerator and denominator are 0 at x = 0, so we can apply l’H (a convenient abbreviation
for l’Hôpital’s rule):

lim
x→0

cos(3x)− 1
sin2(4x)

=l′H lim
x→0

−3 sin(3x)
8 sin(4x cos(4x)

= −3
8

lim
x→0

sin(3x)
sin(4x)

lim
x→0

1
cos(4x)

.

The last limit is 1, and the other limit can be calculated by l’Hôpital’s rule:

lim
x→0

sin(3x)
sin(4x)

=l′H lim
x→0

3 cos(3x)
4 cos(4x)

=
3
4

.

Thus the answer is −9/32.

l’Hôpital’s rule also works when taking the limit as x goes to infinity, or the limits are infinite. We
summarize all these rules:

Proposition 8.2. If f and g are differentiable functions, and suppose that limx→a f(x) and
limx→a g(x) are both zero or both infinite. Then

lim
x→∞

f(x)
g(x)

= lim
x→∞

f ′(x)
g′(x)

.

The limit point a can be ±∞.

Example 8.4. lim
x→π

2
−

tanx

ln(π/2− x)
=
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The superscript “−” means that the limit is taken from the left; a superscript “+” means the limit
is taken from the right. Since both factors tend to ∞, we can use l’Hôpital’s rule:

lim
x→π

2
−

tanx

ln(π/2− x)
=l′H lim

x→π
2
−

sec2 x

−(π/2− x)−1
= − lim

x→π
2
−

π/2− x

cos2 x
.

Now, both numerator and denominator tend to 0, so again:

=l′H − lim
x→π

2
−

−1
−2 cos x sinx

= −∞ ,

since cos x sinx is positive and tends to zero. We leave it to the reader to verify that the limit from
the right is +∞.

Example 8.5. lim
x→π

2
−

tanx

sec x
=

This example is here to remind us to simplify expressions, if possible, before proceeding. If we just
use l’Hopital’s rule directly, we get

lim
x→π

2
−

tanx

sec x
=l′H lim

x→π
2
−

sec2 x

sec x tanx
= lim

x→π
2
−

sec x

tanx
,

which tells us that the sought-after limit is its own inverse, so is ±1. We now conclude that since
both factors are positive to the left of π/2, then the answer is +1. But this would have all been
easier to use some trigonometry first:

lim
x→π

2
−

tanx

sec x
= lim

x→π
2
−

sinx = 1 .

Example 8.6. lim
x→+∞

xn

ex
=

Both factors are infinite at the limit, so l’Hopital’s rule applies. Let’s take the cases n = 1, 2 first:

lim
x→+∞

x

ex
=l′H lim

x→+∞

1
ex

= 0 ,

lim
x→+∞

x2

ex
=l′H lim

x→+∞

2x

ex
=l′H 2 lim

x→+∞

1
ex

= 0 .

We see that for a larger integer n, the same argument will work, but with n applications of
l’Hôpital’s rule. We say that the exponential function goes to infinity more rapidly than any
polynomial.

Example 8.7. lim
x→+∞

x

lnx
=

lim
x→+∞

x

lnx
=l′H lim

x→+∞

1
1/x

= lim
x→+∞

x = +∞ .

In particular, much as in example 8.6, one can show that polynomials grow more rapidly than any
polynomial in lnx.
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Problems 8.1. Evaluate the limits.

1. lim
x→0

cos x− 1
x2

=

2. lim
x→0

sinx− x

x(cos x− 1)
=

3. lim
x→π

(x− π)3

sinx + x− π
=

4. lim
x→0

ex − 1− x

x2
=

5. lim
x→1

lnx

cos((π/2)x)
=

6. lim
x→0+

(
cos(

√
x)− 1
x

) =

7. lim
x→5

(
5cos(πx) + x

x2 − 25
) =

8. lim
x→∞

x√
1 + x2

=

9. lim
x→∞

x lnx

x2 + 1
=

10. lim
x→∞

x(x + 1)√
x3 − 1

=

8.2 Other inderminate forms

Many limits may be calculated using l’Hôpital’s rule. For example: x → 0 and lnx → −∞ as
x → 0 from the right. Then what does x lnx do? This is called an indeterminate form of type
0 · ∞, and we calculate it by just inverting one of the factors.

Example 8.9.

lim
x→0

x lnx = lim
x→0

lnx

1/x
=l′H lim

x→0

1/x

−1/x2
= − lim

x→0

x2

x
= − lim

x→0
x = 0 .
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Example 8.10. lim
x→∞

x(π/2− arctanx) =

This is of type 0 · ∞, so we invert the first factor:

lim
x→∞

x(π/2− arctanx) = lim
x→∞

π/2− arctanx

1/x
=l′H lim

x→∞

−1/(1 + x2)
−1/x2

= lim
x→∞

x2

1 + x2

= lim
x→∞

1
1 + x−2

= 1 .

Another case, the indeterminate form ∞−∞, is to calculate limx→a(f(x)− g(x)), where both f
and g approach infinity as x approaches a. Although both terms become infinite, the difference
could stay bounded, tend to zero, or also tend to infinity. In these cases we have to manipulate
the form algebraically to bring it to one of the above forms.

Example 8.11. lim
x→0

(
1

sinx
− 1

x
) =

lim
x→0

(
1

sinx
− 1

x
) = lim

x→0

x− sinx

x sinx
=l′H lim

x→0

1− cos x

sinx + x cos x
=l′H lim

x→0

sinx

2 cos x− x sinx
= 0 .

Example 8.12. lim
x→∞

x−
√

x2 + 20 =

Here we can change the subtraction of two positive functions to that of addition by remembering

x−
√

x2 + 20 = (x−
√

x2 + 20)
x +

√
x2 + 20

x +
√

x2 + 20
=

x2 − (x2 + 20)
x +

√
x2 + 20

=
−20

x +
√

x2 + 20
,

lim
x→∞

x−
√

x2 + 20 = lim
x→∞

−20
x +

√
x2 + 20

= 0 .

Finally, whenever the difficulty of taking a limit is in the exponent, try taking logarithms.

Example 8.13. lim
x→∞

x1/x =

Let’s take logarithms:

lim
x→∞

ln(x1/x) = lim
x→∞

1
x

lnx = lim
x→∞

lnx

x
=l′H lim

x→∞

1/x

1
= 0 .

Now, exponentiate, using the continuity of exp:

lim
x→∞

x1/x = exp( lim
x→∞

ln(x1/x)) = e0 = 1 .

Problems 8.2: Find the limits.

1. lim
x→1

(
1

lnx
− 1

x− 1
)

2. lim
x→∞

√
1 + x2 − x

x
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3. lim
x→∞

x(
√

1 + x2 − x)

4. lim
x→π/2+

(tanx)(x− π/2)

5. lim
x→1+

(x− 1) ln(lnx)

8.3 Improper Integrals: Infinite Intervals

To introduce this section, let us calculate the area bounded by the x-axis, the lines x = −a, x = a
and the curve y = (1 + x2)−1. This is∫ a

−a

dx

1 + x2
= arctan x

∣∣a
−a

= 2 arctan a .

Since arctan a is always less than π/2, this area is bounded no matter how large we choose a.
In fact, since lima→∞ arctan a = π/2, the area under the total curve y = (1 + x2)−1 adds up to
2(π/2) = π . We can write this in the form

(8.2)
∫ ∞

−∞

dx

1 + x2
= π ,

using the following definitions.

Definition 8.1. a ) Suppose that f(x) is defined and continuous for all x ≥ c. We define∫ ∞

c

f(x)dx = lim
a→∞

∫ a

c

f(x)dx

if the limit on the right exists. In this case we say the integral converges. If there is no limit on
the right, we say the integral diverges.

b) In the same way, if f(x) is defined and continuous in an interval x ≤ c, we define∫ c

−∞
f(x)dx = lim

a→−∞

∫ c

a

f(x)dx

if the limit exists.

c) If f(x) is defined and continuous for all x. Then

(8.3)
∫ ∞

−∞
f(x)dx =

∫ 0

−∞
f(x)dx +

∫ ∞

0

f(x)dx ,

if both integrals on the right side converge.
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Note that it is insufficient to define (8.3) by the limit lima→∞
∫ a

−a
f(x)dx, for this integral is always

zero for an odd function, say f(x) = x, and it would not be appropriate to say that such an integral
converges.

Example 8.14.

∫ ∞

0

e−xdx = 1 .

First we calculate the integral up to the positive number a:∫ a

0

e−xdx = −e−x
∣∣a
0

= 1− 1
ea

.

Now, since e−a → 0 as a →∞, the limit exists and is 1.

Example 8.15.

∫ ∞

1

x−pdx converges for p > 1.

We calculate the integral over a finite interval:∫ a

1

x−pdx =
1

−p + 1
x−p+1

∣∣a
1

=
1

−p + 1
(a−p+1 − 1) .

Now, if −p + 1 < 0, a−p+1 → 0 as a →∞, so our conclusion is valid, and in fact

(8.4)
∫ ∞

1

dx

xp
=

1
p− 1

for p > 1 .

Also, if p < 1 then −p + 1 > 0, so a−p+1 becomes infinite with a, and thus

(8.5)
∫ ∞

1

dx

xp
diverges for p < 1 .

The case p = 1 cannot be handled this way, because then −p + 1 = 0. But

Example 8.16.

∫ ∞

1

dx

x
diverges

We calculate over a finite interval: ∫ a

1

dx

x
= lnx

∣∣a
1

= ln a ,

which goes to infinity as a →∞.

Sometimes we can conclude that the improper integral converges, even though we cannot calculate
the actual limit. This is because of the following fact:

Proposition 8.3. Suppose that F is an increasing continuous function of x for all x ≥ c, and
suppose that F is bounded; that is, there is a positive number M such that M ≥ F (x) for all x.
Then limx→∞ F (x) exists.
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This is an important fact, known as the Monotone Convergence Theorem the proof of which depends
upon an axiomatic development of the real number system. To see why it is reasonable we consider
the least upper bound M0 of the set of values F (x). The relevant fact about real numbers is that
there always is a least upper bound for any nonempty bounded set of real numbers. There must
be values F (x) which come as close as we please to M0, for if not, the values of F stay away from
M0, so this could not be the least upper bound. So this tells us that, for any m < M0, there is
an x0 such that m < F (x0) ≤ M0. But since F is increasing, that means that for all x > x0,
m < F (x) ≤ M0, which confirms that the limit as x →∞ is M0.

Example 8.17.

∫ ∞

1

e−x2
dx converges.

In this range, x2 ≥ x, so e−x2 ≤ e−x. So, for any a,∫ a

1

e−x2
dx ≤

∫ a

1

e−xdx ≤ 1

by example 8.16. Thus the values of the integral are bounded by 1. But since the function is
always positive, the integrals increase as a increases. Thus by Proposition 8.3, the limit exists.

This example generalizes to the following

Proposition 8.4. (Comparison Test). Suppose that f and g are continuous functions defined
for all x ≥ c, and suppose that for all x, 0 ≤ f(x) ≤ g(x). Then

a) If
∫ ∞

c

g(x)dx converges, then
∫ ∞

c

f(x)dx converges .

b) If
∫ ∞

c

f(x)dx diverges, then
∫ ∞

c

g(x)dx diverges .

Example 8.18.

∫ ∞

1

| cos x|dx

x3/2
converges.

Now, we don’t know how to integrate this function, but we do know that | cos x| ≤ 1. Thus the
integrand is always less than or equal to x−3/2, and so, by example 8.17 and proposition 8.6, we
can conclude that our integral converges.

Problems 8.3

In problems 1-6, determine whether or not the integral converges. If it does, try to find its value.

1.

∫ ∞

0

xe−x2
dx =

2.

∫ ∞

0

x2

x3 + 1
dx =
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3.

∫ 1

0

dx

x9/10
=

4.

∫ ∞

3

dx

x(lnx)2
=

5.

∫ ∞

1/5

ln(5x)
x2

dx =

6.

∫ ∞

−∞

dx

(1 + x2)3/2
=

7. Find the area under the curve y = (x2 − x)−1, above the x-axis and to the right of the line
x = 2.

8. The region in the first quadrant to the right of the line x = 1, and below the curve y = 1/x is
rotated about the x-axis. Show that the resulting solid has finite volume.

9.The region described in problem 7 is rotated about the x-axis. Find the volume of the resulting
solid.

10. The equiangular spiral is the curve given parametrically by the equations

x = e−t cos t , y = e−t sin t , 0 ≤ t < ∞ .

Show that this curve crosses the x axis infinitely often, but is of finite length.

8.4 Improper Integrals: Finite Asymptotes

Now, it is also possible, for a function which has a vertical asymptote, that the values approach
the asymptote so fast that the area enclosed is finite.

Example 8.19. Consider y = x−1/2 for x positive. For a slightly larger than 0,∫ 1

a

x−1/2dx = 2x1/2
∣∣1
a

= 2(1−
√

a) .

Now, as a → 0+, this converges to 2. Thus it makes sense to say that
∫ 1

0
x−1/2dx = 2, as we do

with this definition.

Definition 8.2. Let f(x) be defined and continuous for all x in an interval (c, b]. We define∫ b

c

f(x)dx = lim
a→c+

∫ b

a

f(x)dx
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if the limit exists. Similarly if f(x) is defined and continuous for all x in an interval [b, c), we define∫ c

b

f(x)dx = lim
a→c−

∫ a

b

f(x)dx .

Example 8.20.

∫ 1

0

x−pdx converges for p < 1.

We calculate the integral over an interval (a, 1), with a > 0:∫ 1

a

x−pdx =
1

−p + 1
x−p+1

∣∣1
a

=
1

−p + 1
(1− a−p+1) .

Now, if −p + 1 > 0, a−p+1 → 0 as a → 0, so our conclusion is valid, and in fact

(8.6)
∫ 1

0

dx

xp
=

1
1− p

for p < 1 .

Also, if p > 1 then −p + 1 < 0, so a−p+1 becomes infinite as a goes to zero, and thus

(8.7)
∫ 1

0

dx

xp
diverges for p > 1 .

As for the case p = 1, since ∫ 1

a

dx

x
= ln x

∣∣1
a

= − ln a ,

this integral diverges to infinity as a → 0. However:

Example 8.21.

∫ 1

0

lnxdx converges .

By example 9 of chapter 7, for a positive and near 0,∫ 1

a

lnxdx = (x lnx− x)
∣∣1
a

= −1− (a ln a− a) .

By example 8.9, lima→0+ a ln a = 0, so the limit exists and is equal to -1.

Problems 8.4. Determine whether or not the integral converges. If it does, try to find its value.

1.

∫ π/2

0

dx

1− cos x
=

2.

∫ 1

0

dx

(1− x)3/2
=

162



3.

∫ 1/2

0

dx√
x(1− x)

4.

∫ 2

0

dx√
x

=

5.

∫ 1

0

dx

(x− 1)2
=

6.

∫ 10

1

dx

x
√

lnx
=

7. The region in the first quadrant above the line y = 1, and left of the curve y = 1/x is rotated
about the y-axis. Show that the resulting solid has finite volume.

163


