
IX. Sequences and Series

9.1 Sequences

The purpose of this chapter is to introduce a particular way of generating algorithms for finding
the values of a function defined, not by a formula, but by its properties. For example, the trigono-
metric functions have been defined geometrically,and the exponential function as the solution of a
particular differential equations. This type of definition, while uniquely identifying the function,
does not give a way to calculate its values at specific points. Such a way is given by the technique
of Infinite Series. Computer algorithms for determining the value of a function are based on the
usual arithmetic operations; thus an exact determination can only be achieved for those functions
expressed explicitly in terms of the arithmetic operations: the rational functions (quotients of
polynomials). If a function is transcendental, its values can only be approximated. For example,
we have seen that

ex = lim
n→∞

(1 +
x

n
)n .

This expression tells us that, if for any n, we calculate the expression on the right, these numbers
will, for n large enough, be close to the “true” value of ex. Now, it turns out that this is a very
inefficient way to calculate ex, and the expression as an infinite series (which we will discuss in
depth later in this chapter)

(9.1) ex = 1 + x +
x2

2!
+

x3

3!
+ · · ·+ xn

n!
+ · · ·

is far better. Equation (9.1) is to be understood in this way: start with E0 = 1. To get E1 add
x/1! to E0; now get E2 by adding x2/2! to E1, and so forth. That is, for every n ≥ 1 add xn/n!
to En−1 to get En.Finally, if we take n large enough, we have a good approximation to ex, and
as n increases the approximation gets better. Of course, it is important to have estimates on how
good this approximation is, as well as, in general, to have ways of discovering these approximating
sums. That is what we study in this chapter, starting with the idea of convergence in the sense of
“good approximation”.

Definition 9.1. A sequence is a list of numbers, denoted {an}, where an is the nth term of the
sequence.

A sequence may be defined by a specific formula or an algorithm for determining the members of
the sequence successively.

Example 9.1. The formulae

(9.2) an = n , n ≥ 1 ; bn =
n + 1
n− 1

, n ≥ 2 ; cn = 3 + 2n, n ≥ 0

define the sequences, respectively:

1, 2, 3, . . . , n, . . . ;
3
1
,
4
2
,
5
3
, . . . ,

n + 1
n− 1

, . . . ; 3, 5, 7, 9, . . . , 3 + 2n, . . .

A sequence is said to be defined recursively, or by a recursive algorithm when we are told the
first member (or members) of the sequence; and then given an expression for determining the nth
number, once we have calculated the first n− 1 numbers. For example, the data:

c0 = 3 ; and for n > 0, cn = cn−1 + 2
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defines the last sequence of (9.2). Similarly, the first sequence of (9.2) is given by the recursion
a1 = 1, an = an−1 + 1.

The symbol n! (read “n-factorial”) is used to denote the product of the first n integers. This also
has the recursive definition: a0 = 1, and for n > 0, an = nan−1. (Note that we have taken 0! to
be 1).

We can also verify formulas or assertions about the positive integers by recursion. That is, suppose
that P (n) represents an assertion for the integer n. If we can verify that (A): P (1) is true, and
(B): the truth of P (n) follows from the truth of P (n − 1), then we can assert that P (n) is true
for all n. For, (A) tells us that P (1) is true, and so by (B) we conclude that P (2) is also true,
and so, by (B) again, P (3) is true, and so also P (4), P (5) and so on. For any integer n, with n
applications of (B), we verify the truth of P (n). For future reference we record this method as:

Proposition 9.1. (The Principle of Mathematical Induction). Let P (n) represent an
assertion about the positive integer n. If we can verify P (1) and also show that the truth of
P (n− 1)implies the truth of P (n), then P (n) is true for all integers n.

Example 9.2. Consider the sequence defined recursively by a1 = 1, an = an−1 + n. Note that
this equivalent to saying that an is the sum of the first n positive integers. Let’s show that

an =
n(n + 1)

2
.

Call this the assertion P (n). Clearly a1 = 1(2)/2, so P (1) is true. Now, let’s assume we know the
truth of P (n− 1), and verify it for n:

an = an−1 + n =
(n− 1)n

2
+ n =

n2 − n + 2n

2
=

n2 + n

2
=

n(n + 1)
2

.

Example 9.3. Define the sequence recursively by c0 = 1, cn = 1 + rcn−1. Then

cn =
1− rn+1

1− r
.

The first case (n = 0) is certainly true:

c0 = 1 =
1− r0+1

1− r
.

Now, let’s verify that the truth for n− 1 implies that for n:

cn = 1 + rcn−1 = 1 + r
1− rn

1− r
=

1− r + r − rn+1

1− r
=

1− rn+1

1− r
.

Of the sequences described in (9.2), the first and the third clearly grow without bound, but the
second is bounded; in fact, if we rewrite the general term as

bn =
n + 1
n− 1

=
1 + 1

n

1− 1
n

,
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we see that the sequence bn approaches 1 as n gets larger and larger. We say that bn converges to
1, as in the following definition.

Definition 9.2. A sequence {a1, a2, . . . , an, . . .} converges to a limit L, written

lim
n→∞

an = L ,

if, for every ε > 0, there is an n0 such that for all n ≥ n0 we have |an − L| < ε.

This just says that we can be sure that an is as close to L as we need it to be, just by taking
the index n large enough. We will rarely have to actually use this definition, relying more on
understanding what it says, and known facts about limits. For example:

Proposition 9.2. If the general term an of a sequence can be expressed as f(n) for a continuous
function f , then if we know that limx→∞ f(x) = L, then we can conclude that limx→∞ an = L.

As an application, using results from the preceding chapter, we have

Proposition 9.3.

(a) lim
n→∞

np = ∞ for p > 0 ,

(b) lim
n→∞

1
np

= 0 for p > 0 ,

(c) lim
n→∞

A1/n = 1 if A > 0 .

Let p and q be polynomials.

(d) lim
n→∞

p(n)
q(n)

= 0 if deg p < deg q, lim
n→∞

p(n)
q(n)

= ∞ if deg p > deg q .

(e) If the polynomials p and q have the same degree, then

lim
n→∞

p(n)
q(n)

=
a

b
,

where a and b are the leading coefficients of p and q.

(f) lim
n→∞

p(n)
en

= 0 for any polynomial p .

(g) lim
n→∞

p(n)
ln(n)c

= ∞ for any polynomial of positive degree and any positive c .
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These can all be derived by replacing n by x, and using limit theorems already discussed (such as
l’Hôpital’s rule).

Example 9.4. lim
n→∞

n2

n2 + n + 1
= 1 , by (e) above .

Example 9.5. lim
n→∞

(−1)n

n
= 0 ,

since the numerator oscillates between -1 and 1, and the denominator goes to zero. We should not
be perturbed by such oscillation, so long as it remains bounded. For example we also have

lim
n→∞

sin(n)
n

= 0 ,

since the term sin(n) remains bounded. The following propositions state the general rule for
handling such cases.

Proposition 9.4. a) (Squeeze theorem) Given three sequences an, bn, cn, if

an ≤ bn ≤ cn for all n , and lim
n→∞

an = lim
n→∞

cn = L ,

then also
lim

n→∞
bn = L .

b) If an = bncn, the sequence bn is bounded, and limn→∞ cn = 0, then also limn→∞ an = 0.

Let’s see why b) is true, using a). First, we leave it to the reader to verify that if limn→∞ cn = 0,
then also limn→∞| cn| = 0Let M be the bound of the |bn|. Then

−M |cn| ≤ bncn ≤ M |cn|

so a) applies and the conclusion follows.

In some cases where none of the above rules apply, we have to return to the definition of convergence.

Example 9.6. For any a > 0, lim
n→∞

an

n!
= 0 .

To see why this is true, we think of the sequence as recursively defined: a1 = 1, and each an

is obtained by multiplying its predecessor by a/n. Now, eventually, that is, for n large enough,
a/n < 1/2. Thus each term after that is less than half its predecessor. This now surely looks like
a sequence converging to zero. To be more precise, let N be the first integer for which a/N < 1/2.
Then for any k > 0,

aN+k

(N + k)!
<

1
2k

aN

N !
.

Now the sequence on the right is a fixed number (aN/N ! ) times a sequence (1/2k) which tends to
zero. Thus our sequence also converges to zero, by the squeeze theorem (proposition 9.4a).
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Note that in the above argument, we only had to show that the general term of our sequence is
dominated by the general term of a sequence converging to zero from some point on. What happens
to any finite collection of terms of a sequence is not relevant to the question of convergence. We
shall use the word eventually to mean “from some point on”, or more precisely, “for all n greater
than some fixed integer N”. We restate proposition 9.4, using the word ”eventually”:

Proposition 9.5. a) (Squeeze theorem) Given three sequences an, bn, cn, if eventually

an ≥ bn ≥ cn, and lim
n→∞

an = lim
n→∞

cn = L ,

then also
lim

n→∞
bn = L .

b) Suppose that an = bncn eventually, that is, for all n larger than some N . If the sequence bn is
bounded and limn→∞ cn = 0, then also limn→∞ an = 0.

Example 9.7. For any positve integer p, lim
n→∞

np

n!
= 0 .

The idea here is that the numerator is a product of p terms, whereas the denominator is a product
of n terms, so grows faster than the numerator. To make this precise, write

np

n!
=

n · · ·n
n(n− 1) · · · (n− p + 1)

1
(n− p)!

.

Now, if n is so large that n/(n− p) < 2 , (n > 2p will do), then the first factor is bounded by 2p.
Thus, for n > 2p, that is, eventually,

np

n!
< 2p 1

(n− p)!
.

Since 1/(n− p)! → 0 as n →∞, the result follows from the squeeze theorem.

An important fact that we will need is the following.

Proposition 9.6. A bounded monotonically increasing sequence converges.

Let’s make sure that the terms involved are clear. A sequence an is bounded if there is a number
M such that M ≥ |an| for all n. A sequence is monotonically increasing if, for all n, an ≤ an+1.

Proposition 9.6 follows from the fact about real numbers that any bounded nonempty set has a least
upper bound. So, for a the least upper bound of the given sequence {an}, we have limn→∞ an = a.
For if c is any number less than a, it is not an upper bound of the sequence, so there is an N such
that c < aN < a. But now, since the sequence is monotonically increasing, for every n ≥ N , we
have c < an < a.

Finally, we note that the limit of a sum is the sum of the limits:

Proposition 9.7. If an = bn+cn, and the sequences bn and cn converge, then so does the sequence
an, and

lim
n→∞

an = lim
n→∞

bn + lim
n→∞

cn .
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Problems 9.1

Find the limits.

1. lim
n→∞

n

(lnn)15

2. lim
n→∞

nk

n!

3. lim
n→∞

(n + 1
n

)2

4. lim
n→∞

(2n− 1)2

n2 − 3n + 1

5. lim
n→∞

(1 + n)n

n!

6. Show part c) of proposition 9.3:

lim
n→∞

A1/n = 1 if A > 0 .

7. Find lim
n→∞

n1/n .

8. Find lim
n→∞

√
n2 + 1√
n3 + 1

.

9. Define the sequence an recursively by

a1 = 1 , an =
1
2
(10 + an−1) .

Show that an converges to 10.

10. Let an = rn where

r =
1 +

√
5

2
or r =

1−
√

5
2

.

Show that
an+2 = an+1 + an for all n ≥ 2 .

9.2 Series

For many sequences, in fact, the most important ones, the general term is formed by adding
something to its predecessor; that is, the sequence is formed by the recursion sn = sn−1 + an,
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where an is from another sequence. Such a sequence is called a series. Explicitly, the terms of the
series are

a1, a1 + a2, a1 + a2 + a3, . . . , a1 + a2 + a3 + · · ·+ an, · · · .

It is useful to use the summation symbol:

a1 + a2 + a3 + · · ·+ an =
n∑

k=1

ak .

Definition 9.3. The series
∞∑

k=0

ak

is to be considered as the limit of the sequence

sn =
n∑

k=0

ak .

If the limit L of the sequece {sn} exists, the series is said to converge, and L is called its sum. If
the limit does not exist, the series diverges. The terms of the sequence sn are called the partial
sums of the series.

Example 9.8.
∞∑

k=1

1
2k

= 1 .

Let’s look at a few partial sums:

1
2

,
3
4

,
7
8

,
15
16

, . . .

We see that, at least for the first four terms

(9.3) sn =
2n − 1

2n
.

Let’s now see that this is true for all n, using the principle of mathematical induction. Suppose
we’ve verified (9.3) for all integers up to n − 1; we now verify this for n. By definition and (9.3)
for sn−1:

sn = sn−1 +
1
2n

=
2n−1 − 1

2n−1
+

1
2n

.

Putting this all over the denominator 2n, we obtain

sn =
2n − 2 + 1

2n
=

2n − 1
2n

,

which is just (9.3) for sn.

Now, by (9.3):
∞∑

k=1

1
2k

= lim
n→∞

sn = lim
n→∞

2n − 1
2n

= lim
n→∞

(1− 1
2n

) = 1 .
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Remember that the index is a way of relating the partial sums of the series to the general term
from which it is defined, so if we change that relation consistently, we don’t change the series. For
example,

∞∑
k=1

ak =
∞∑

n=1

an =
∞∑

k=0

ak+1 =
∞∑

m=9

am−8

and so forth. Each representation comes about by replacing the index with a new index. For
example, if we substitute n for k, we get the first equality; if we substitute k + 1 for n we get the
second equality, and if we replace k + 1 by m− 8, we get the last one. It is often useful to make a
change of index as the next examples show.

Example 9.9.
∞∑

k=0

1
2k

= 2 .

For
∞∑

k=0

1
2k

= 1 +
∞∑

k=1

1
2k

= 1 + 1 = 2 .

Example 9.10.

∞∑
k=n

1
2k

=
1

2n−1
.

First, change the index by k = m + n, and then factor out 2−n:

∞∑
k=n

1
2k

=
∞∑

m=0

1
2m+n

= 2−n
∞∑

m=0

1
2m

= 2−n · 2 = 2−n+1 .

Proposition 9.8 (Geometric Series) :

∞∑
k=0

xk =
1

1− x
for |x| < 1 ,

∞∑
k=0

xk diverges for |x| ≥ 1 .

To show this, we obtain (by a clever little observation) a formula for the partial sums

sn =
n∑

k=0

xk = 1 + x + x2 + · · ·+ xn .

Note that
sn+1 = (1 + x + x2 + · · ·+ xn) + xn+1 = sn + xn+1 and

(9.4) sn+1 = 1 + (x + x2 + · · ·+ xn+1) = 1 + xsn .

(Note that (9.4) is the recursive definition of the partial sums we’ve already seen in example 9.3).
Equating these expressions for sn+1, we obtain sn + xn+1 = 1 + xsn. Solving this for sn:
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sn =
n∑

k=0

xk =
1− xn+1

1− x
,

so
∞∑

k=0

xk = lim
n→∞

sn = lim
n→∞

1− xn+1

1− x
,

which equals (1− x)−1 if |x| < 1 and diverges if |x| > 1.

We look at the cases x = ±1 separately. For x = 1, sn = n, so the series diverges. For x = −1,
the sequence sn is the sequence 1, 0, 1, 0, 1, 0, . . ., so cannot converge to any particular number.

Example 9.11.
∞∑

n=1

1
k(k + 1)

= 1 .

We first use the fact that
1

k(k + 1)
=

1
k
− 1

k + 1
.

Thus the partial sum sn can be calculated:

sn = (1− 1
2
) + (

1
2
− 1

3
) + (

1
3
− 1

4
) + · · ·+ (

1
n
− 1

n + 1
)

= 1 + (−1
2

+
1
2
) + (−1

3
+

1
3
) + (−1

4
+

1
4
)− · · ·+ (− 1

n
+

1
n

)− 1
n + 1

= 1− 1
n + 1

,

which converges to 1 as n goes to infinity. This is an example of a telescoping series.

We now observe that if a series converges, its general term must go to zero.

Proposition 9.9. If
∞∑

k=0

ak converges, then lim
n→∞

ak = 0 .

To see this, let sn =
∑n

k=0 ak, tn =
∑n−1

k=0 ak. Then, since these are both sequences of the partial
sums of the series, but indexed differently, limn→∞ sn = limn→∞ tn. Thus limn→∞(sn − tn) = 0.
But sn − tn = an.

Be careful: there are many series whose general term goes to zero which do not
converge.

Proposition 9.5 for sequences translates to the following for series:

Proposition 9.10. If an = bn + cn, and the series
∑

bn and
∑

cn converge, then so does the
series

∑
an, and ∑

an =
∑

bn +
∑

cn .
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Absolute Convergence

There are new difficulties when we have to consider series including negative as well as positive
terms. For example, although the series

∑
1/n diverges (as we’ll see below, example 9.16), if we

alternately change signs, the series converges.

Example 9.12. The series

1− 1
2

+
1
3
− 1

4
+ · · · =

∞∑
n=1

(−1)n+1

n
converges.

To see this, we start by looking at the sequences of even partial sums and odd partial sums
separately. Since

s2(n+1) = s2n +
1

2n + 1
− 1

2n + 2
> s2n

the sequence of even partial sums is increasing. Similarly,

s2(n+1)+1 = s2n+1 −
1

2n + 2
+

1
2n + 3

< s2n+1

tells us that the sequence of odd partial sums is decreasing. Now

(9.5) s2n+1 = s2n +
1

2n + 1
> s2n ,

that is, the odd partial sums are all greater than all the even partial sums. So both sequences are
monotonic and bounded, and thus converge. But, they converge to the same limit, as we see by
taking the limits in the expression (9.5):

lim
n→∞

s2n+1 = lim
n→∞

s2n + lim
n→∞

1
2n + 1

= lim
n→∞

s2n ,

since 1/(2n + 1) → 0. Since the sequences of even partial sums and that of odd partial sums
converge to the same limit, the full sequence also converges, and to the same limit.

This argument actually generalizes to any alternating series, a series whose terms alternate in sign.

Proposition 9.11. If an is a decreasing sequence, and limn→∞ an = 0 then the series

∞∑
n=1

(−1)nan

converges.

Definition 9.4 Given a sequence an, we say the series
∑

an converges absolutely if, for the series
formed of the absolute values |an|, we have convergence:

∑
|an| < ∞.

Proposition 9.12. If a series converges absolutely, it converges. That is,

if
∑

|an| < ∞ , then
∑

an converges.
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To see that, let sn be the nth partial sum of the sequence, pn the sum of all the positive terms
making up sn, and qn the sum of the absolute values of all the negative terms. Then

sn = pn − qn .

Both sequences pn and qn are increasing, and bounded by
∑
|an|, so converge, to, say p, q respec-

tively. Then ∑
an = lim

n→∞
sn = lim

n→∞
pn − lim

n→∞
qn = p− q .

Problems 9.2

Does the series converge? If it does, try to find the sum.

1.

∞∑
n=1

5n

8n+1

2.
∞∑

n=1

5n

8n + 1

3.
∞∑

k=1

1
(2k)(2k + 2)

4.
∞∑

n=1

(−1)n n

n + 21

5.

∞∑
n=1

n

2n

Do these series converge:

6.

∞∑
0

(−1)3n+1 n2

n3 − (−1)n
.

7.
∞∑
0

2n + 3n+1

6n
.

8. Let an be a sequence of positive numbers. Show that if
∑

an converges then
∑

a2
n converges.
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9.3 Tests for Convergence

Throughout this section, unless otherwise specified, we will be considering series, all of whose terms
are positive. For such a series, the sequence of partial sums is increasing. If they remain bounded,
then, by proposition 9.6, the sequence of partial sums will converge.

Proposition 9.13. If ak ≥ 0 for all k, and there is an M > 0 such that

n∑
k=0

ak ≤ M for all n ,

then
∞∑

k=0

ak converges .

The hypothesis of this proposition is that the sequence sn of partial sums is bounded. But since all
the an are nonnegative, the sequence is monotone increasing. Thus, by the monotone convergence
theorem (proposition 9.6), the sequence of partial sums converges, and thus the series converges.
Note that conversely, if a series of nonnegative numbers converge, then the sequence of partial
sums is bounded (by the sum of the entire series.

Because of proposition 9.13,, for a series with positive terms, the statements
∑

ak converges,∑
ak diverges, are usually written simply as

(9.6)
∞∑

k=0

ak < ∞ (converges) ,
∞∑

k=0

ak = ∞ (diverges) .

Here is an important application of this proposition:

Proposition 9.14. (Comparison Test). Given two sequences ak, bk with 0 ≤ ak ≤ bk. Then

(a) if
∑

bk < ∞ , then
∑

ak < ∞ ,

(b) if
∑

ak = ∞ , then
∑

bk = ∞ .

As for (a), the sequence of partial sums of sn =
∑n

0 ak is bounded by
∑∞

0 bk, so converges by
Proposition 9.13. In the second case, since the sequence of partial sums

∑
ak has no bound, neither

does the sequence of partial sums of
∑

bk.

It is important to observe that it is not necessary that the inequalities in the hypothesis of propo-
sition 9.14 hold for all k, only that they eventually hold. That is because the issue of convergence
of a series is determined by the end of the series, and not affected by any finite number of terms.

Example 9.13.
∑ 1

rk(r + 1)
< ∞ if 0 < r < 1.
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Since rk+1 < rk(r + 1),
1

rk(r + 1)
<

1
rk+1

,

so the comparison test applies.

Example 9.14.
∑ k

rk
< ∞ if r > 1.

Now, here the trouble is that the numerator grows without bound - but it doesn’t grow as fast a
power. So, what we do is borrow something from the denominator to compensate for the numerator.
We note that eventually k/rk/2 < 1; in fact, this is true as soon as k > 2 ln k/ ln r (which eventually
happens, since k/ ln k →∞). Then for all k larger than this number

k

rk
=

k

(
√

r)k

1
(
√

r)k
<

1
(
√

r)k
.

Since r > 1, we also have
√

r > 1, and so the series∑ 1
(
√

r)k

converges, and thus, by comparison, our original series converges.

Example 9.15.

∞∑
n=0

1
n2

< ∞ .

Now,
1
n2

<
1

n(n− 1)
=

1
n− 1

− 1
n

,

so our series is dominated by a telescoping series which converges (see example 9.11 above).

A very useful application of the comparison test is the following.

Proposition 9.15 (The Integral Test). Suppose that f is a nonnegative, nonincreasing function
defined on an interval [M,∞), where M is an integer. Suppose the an is a sequence such that for
n ≥ M , an = f(n). Then

(a) if
∫ ∞

M

f(x)dx < ∞ then
∞∑

n=M

an < ∞ ,

(b) if
∫ ∞

M

f(x)dx = ∞ then
∞∑

n=M

an = ∞ .

Let

bn =
∫ n+1

n

f(x)dx .
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Then, since the function is nonincreasing, f(n) ≥ bn ≥ f(n+1); that is an ≥ bn ≥ an+1 . Now, use
the comparison theorem. For example, if

∫
f(x)dx < ∞, then

∑
bn converges, so by comparison∑

an+1 also converges.

Example 9.16 (The harmonic series).

∞∑
n=1

1
n

= ∞ .

We apply the integral test using the function f(x) = 1/x. Since∫ ∞

1

dx

x
= ∞ ,

as we saw in chapter 8, the result follows.

If we apply example 8.17 to series via the integral test we have a result which is very useful for
comparisons:

Proposition 9.16. Let p be a positive number.

(a)
∞∑

n=1

1
np

< ∞ if p > 1

(b)
∞∑

n=1

1
np

= ∞ if p ≤ 1

This follows from the facts (example 8.17):∫ ∞

1

dx

xp
< ∞ if p > 1 and = ∞ if p ≤ 1 .

Example 9.17.

∞∑
n=2

1
n(lnn)p

.

The function f(x) = 1/x(lnx)p is decreasing. We integrate using the substitution u = ln x:∫ A

2

dx

x(lnx)p
=

∫ ln A

ln 2

du

up
.

We know (again from example 8.17) that this converges if p > 1, and otherwise diverges. Thus, by
the integral test,

∞∑
n=2

1
n(lnn)p

< ∞ if p > 1 ,

and otherwise diverges.
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We now turn to a tool to test for convergence when we cannot realize the general term of the series
in the form f(n) for some function f . For example, if the expression for an involves the factorial,
we proceed to the following.

Proposition 9.17. (Ratio Test). Given the series
∑

an, consider

lim
an+1

an
= L ,

if the limit exists. If L < 1, the series converges; if L > 1, the series diverges. For the case L = 1,
we can draw no conclusion.

Suppose that L < 1. Then there a number r with L < r < 1 such that eventually an+1/an < r.
That is, there is an integer N such that an+1/an < r for all n ≥ N . We conclude

aN+1 < aNr , aN+2 < aN+1r < aNr2 , aN+3 < aN+2r < aNr3 ,

and so forth. Thus, we have, for all k ≥ 1, aN+k < aNrk, so by comparison with the geometric
series, our series converges.

If on the other hand, L > 1, there is a number r, L > r > 1, such that eventually an+1/an > r.
Following the same argument but with the inequalities reversed, we conclude that for all k ≥ 1,
aN+k/aN ≥ rk, so we have divergence by comparison with the geometric series. We can conclude
nothing if L = 1. This is the case for the all the series of the type

∑
1/np, and as we have seen,

for some p we get convergence, and divergence for other p.

Example 9.18.
∞∑

n=1

an

n!
.

We try the ratio test.
an+1

an
=

an+1

(n + 1)!
n!
an

=
a

n + 1
→ 0

as n →∞, so the ratio test gives us convergence.

Example 9.19.
∞∑

n=1

n2xn converges for − 1 < x < 1 .

Here we use the ratio test for the absolute values;

|an+1|
|an|

=
(n + 1)2|x|n+1

n2|x|n
= (

n + 1
n

)2|x| → |x| .

Thus, we get convergence for x of absolute value less than 1.

Example 9.20.
∞∑

n=1

2nn3

3n
.
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Try the ratio test:
an+1

an
=

2n+1(n + 1)3

3n+1

3n

2nn3
=

2
3
(n + 1

n
)3 → 2

3

so we have convergence.

Example 9.21.
∞∑

n=1

rn .

Here the ratio test gives
an+1

an
= r ,

so we conclude that the series converges if r < 1, and diverges if r > 1. This may seem to be a
simplification of proposition 9.8, but in fact it is a fraud. The argument is circular, for we have
used proposition 9.8 to derive the ratio test.

Notice that we didn’t really need to know that the limit of an+1/an exists, only that eventually
these ratios are either less than some number less than 1 to conclude convergence, or greater than
some number greater than 1, for divergence.

Problems 9.3

For each problem, determine whether or not the series converges or diverges. Give your reasoning.

1.
∞∑

n=1

n + 1
n3

2.

∞∑
n=2

(n + 1)2

n3 lnn

3.

∞∑
n=1

2n

n!

4.
∞∑

n=1

ne

en

5.

∞∑
n=1

n5/2

n4 − n3 + n2 + 1

6.
∞∑

n=1

n!n
(2n)!
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7. Σ∞n=1

n2 + 1
n3
√

n

8.
∞∑

n=1

lnn

n2

9.
∞∑

n=1

2nn3

n!

10. For what positive integers k (if any) does the following series converge? Give your reasoning.

∞∑
n=1

k!(n− k)!
n!

9.4 Power series

Definition 9.5. A power series is a series of the form

(9.7)
∞∑

n=0

an(x− c)n .

The point c is called the center of the power series.

A power series defines a function on the set of points for which it converges by

f(x) =
∞∑

n=0

an(x− c)n .

The series provides an effective way of approximately evaluating the function f ; our goal in these
last sections is to show that the transcendental functions we’ve come across do have a power series
representation. We can use the ratio test to determine the question of convergence. We take the
ratio of successive terms of (9.7):

|an+1||x− c|n+1

|an||x− c|n
=
|an+1|
|an|

|x− c| → L|x− c| ,

if the limit L = limn→∞ |an+1|/|an| exists. In this case the series converges absolutely for |x− c| <
1/L, and diverges for |x− c| > 1/L. It can be shown that, in general, even if the limit of the ratio
of successive coefficients doesn’t exist, there is an interval, say of radius R, centered at c in which
the power series converges absolutely, and diverges outside that interval. R may be zero, in which
case the series converges only for x = c, or we may have R = ∞ in which case the series converges
for all real numbers. For other values of R, what happens at the endpoints of the interval needs
to be determined independently. R is called the radius of convergence of the power series.
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Proposition 9.18. Given the power series representation

f(x) =
∞∑

n=0

an(x− c)n ,

there is a number R, 0 ≤ R ≤ ∞ such that we get absolute convergence for all x, |x− c| < R, and
divergence for all x, |x− c| > R. We have this value of R:

lim
n→∞

|an+1|
|an|

=
1
R

,

if the limit exists.

The first example of a power series representation is that of the geometric series:

Example 9.22.
∞∑

n=0

xn =
1

1− x
for |x| < 1

has the radius of convergence R = 1 (recall proposition 9.8).

Example 9.23.

∞∑
n=0

nkxn converges for |x| < 1

for any number k. We use the ratio test. The ratio of successive coefficients

(n + 1)k

nk
= (

n + 1
n

)k → 1

as n →∞.

Example 9.24.
∞∑

n=0

xn

n!
has radius of convergence R = ∞ .

Using the ratio test:
1

(n + 1)!
/ 1

n!
=

1
n + 1

→ 0 ,

so R = ∞, and the series converges for all x. On the other hand, the ratio test shows us that the
series

∞∑
n=0

n!xn

has radius of convergence R = 0, so converges only for x = 0.

Power series, like the geometric series, converge quite rapidly. To illustrate this, consider the series

∞∑
n=0

1
n!

.
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By example 9.24, this converges, and as we shall see in example 9.29, the sum is e. We now see
how close to e the sum of the first k terms brings us. The difference between e and this sum is the
sum of the remaining terms

∞∑
n=k

1
n!

=
∞∑

m=0

1
(m + k)!

,

by the substitution n = m + k. Now (m + k)! ≥ m!k!, since (m + k)! is m! times k terms, each of
which is greater than the corresponding term in k!. Thus

∞∑
n=k

1
n!
≤

∞∑
m=0

1
k!m!

=
1
k!

∞∑
m=0

1
m!

=
e

k!
.

So, for example,

1 + 1 +
1
2

+
1
6

+
1
24

is within 3/120 of e (using the simple estimate e ≤ 3).

Newton thought of power series as “generalized polynomials” - that is, as polynomials, only longer.
This is justified, because we can operate with power series just as we operate with poynomials: we
can add, multiply, and substitute in them by doing so term by term.

Example 9.25.
x

1− x
=

∞∑
n=0

xn+1 for R < 1 .

For
x

1− x
= (x)

1
1− x

= x(1 + x + x2 + x3 + · · ·) = x + x2 + x3 + x4 + · · ·

Example 9.26.
1

1− x2
=

∞∑
n=0

x2n ,
1

1 + x2
=

∞∑
n=0

(−1)nx2n for |x| < 1 .

To see the first, we note that 1/(1−x2) is obtained from 1/(1−x) by substituting x2 for x. Thus,
the power series representation is obtained in the same way. In the second, we have substituted
−x2 for x.

Example 9.27. Find a power series expansion for 1/(5− 2x) centered at the origin. What is its
radius of convergence?

To solve a problem like this, we have to relate the function to another function, whose power series
we know. In this case that would be 1/(1 − x). Now 5 − 2x = 5(1 − (2/5)x), so our function is
obtained from 1/(1−x) by first replacing x by (2/5)x, and then dividing by 5. We follow the same
instructions with the power series.

Start with :
1

1− x
=

∞∑
n=0

xn .

Replace x by (2/5)x :
1

1− (2/5)x
=

∞∑
n=0

(
2
5
x)n .
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Divide by 5 and clean up :
1

5− 2x
=

1
5

∞∑
n=0

(
2
5
x)n =

∞∑
n=0

2nxn

5n+1
.

We can calculate the radius of convergence using proposition 9.18, or we can reason as follows:
since the series we started with converges for |x| < 1, our final series converges for |(2/5)x| < 1, or
|x| < 5/2.

Finally, we can also integrate and differentiate power series term by term:

Proposition 9.19. Suppose that f(x) =
∑∞

n=0 anxn has radius of convergence R. Then∫ x

0

f(t)dt =
∞∑

n=0

an

n + 1
xn+1 ,

f ′(x) =
∞∑

n=1

nanxn−1 ,

and both have the same radius of convergence, R.

Example 9.28. arctanx =
∞∑

n=0

(−1)n

2n + 1
x2n+1 .

We know that the derivative of the arc tangent is 1/(1+x2). Now, in example 9.26, we have already
found the power series representation of that function, so we obtain the power series representation
of arctanx by integrating term by term.

Example 9.29. ex =
∞∑

n=0

xn

n!
for all x .

Let f(x) =
∑∞

n=0 xn/n! Then, differentiating term by term, we find

f ′(x) =
∞∑

n=1

nxn−1

n!
=

∞∑
n=1

xn−1

(n− 1)!
=

∞∑
n=0

xn

n!
,

where the last equation is obtained by replacing the index n by n + 1. Thus f ′(x) = f(x), so
satisfies the differential equation, y′ = y, defining the exponential function. Since f(0) = 1 also, it
is the exponential function.

Example 9.30. e−x2
=

∞∑
n=0

(−1)n x2n

n!
for all x .

Just replace x in example 9.29 by −x2.

Problems 9.4

In problems 1-5 find the radius of convergence of the series:

1.
∞∑

n=1

2n

(n + 1)!
xn
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2.
∞∑

n=1

n

3n
xn

3.
∞∑

n=0

n(n− 1)(n− 2)(
x

3
)n

4.
∞∑

n=1

(2n)!
(n!)2

xn

5.

∞∑
n=1

(n + 1)(n + 2)(n + 3)
n!

xn

6. Let

f(x) =
∞∑

n=0

(n + 2)(n + 1)
n!

xn .

Find a formula for the function f .

7. We know that for r > 0, r < 1,
∞∑

n=0

rk =
1

1− r
.

Show that the error made in summing just the first k + 1 terms is at most rk+1/(1− r).

8. Does the series converge or diverge? Give your reasoning.

a)
∞∑

n=1

n2 + 1
n4 − n2 + n

.

b)
∞∑

n=1

n!
en

c)
∞∑

n=1

ecos(nπ)

n2

9. a) Let f(x) =
∑∞

n=0(2
n − 1)xn. What is the radius of convergence of the series?

b). Write f(x) in closed form (that is, as an algebraic expression).

9.5 Taylor series
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Finally we tackle the question: how do we find the power series representation of a given function?
Recalling that the purpose of the power series is to have an effective way to approximate the values
of a function by polynomials, we turn to that question: what is the best way to so approximate a
function? We start with a function f that has derivatives of all orders defined in an interval about
the origin. To begin with, we recall the definition of the derivative in this context:

lim
x→0

f(x)− f(0)
x

= f ′(0) .

If we rewrite this as

lim
x→0

f(x)− (f(0) + f ′(0)x)
x

= 0 ,

we see that the linear function y = f(0) + f ′(0)x approximates f(x) to first order: f(0) + f ′(0)x is
closer to f(x) than x is to zero, and by an order of magnitude. We now ask, can we find a quadratic
polynomial which approximates f to second order? Let y = a + bx + cx2 be such a polymomial.
Then we want

lim
x→0

f(x)− (a + bx + cx2)
x2

= 0 .

We calculate this limit using l’Hôpital’s rule. First of all, for l’Hôpital’s rule to apply, we have to
have a = f(0). Then

lim
x→0

f(x)− (f(0) + bx + cx2)
x2

=l′H lim
x→0

f ′(x)− (b + 2cx)
2x

.

We can apply l’Hôpital’s rule again, if we have b = f ′(0):

lim
x→0

f(x)− (f ′(0) + 2cx)
2x

=l′H lim
x→0

f ′′(x)− 2c

2
= 0

if c = f ′′(0)/2. We conclude that the polynomial

f(0) + f ′(0)x +
f ′′(0)

2
x2

approximates f to second order: this is closer to f(x) than x is to 0 by two orders of magnitude.
Furthermore, it is the unique quadratic polynomial to do so.

We can repeat this procedure as many times as we care to, concluding

Proposition 9.19. The polynomial which approximates f near 0 to nth order is

f(0) + f ′(0)x +
f ′′(0)

2
x2 + · · ·+ f (n)(0)

n!
.

Of course we can make the same argument at any point, not just the origin. To summarize:

Definition 9.6. Suppose that f is a function with derivatives at all orders defined in an interval
about the point c. The Taylor polynomial of degree n of f , centered at c is

(T (n)
c f)(x) =

n∑
k=0

f (k)(c)
k!

(x− c)k .
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Proposition 9.20. The Taylor polynomial T
(n)
c f is the polynomial of degree at most n which

approximates f near c to nth order.

So, we can compute effective approximations to the values of f(x) near c by these Taylor polyno-
mials; but the question is, how effective is this? More precisely, what is the error? We use this
estimate:

Proposition 9.21. Suppose that f is differentiable to order n + 1 in the interval [c − a, c + a]
centered at the point c. Then the error in approximating f in this interval by its Taylor polynomial
of degree n, T

(n)
c f is bounded by

(9.8)
Mn+1

(n + 1)!
|x− c|n+1 ,

where Mn+1 is a bound of the values of f (n+1) over the interval [c − a, c + a]. To be precise, we
have the inequality

|f(x)− Tn
c f(x)| ≤ Mn+1

(n + 1)!
|x− c|n+1 .

In the first section of the next chapter we will show how the error estimate is obtained, and see
how to work with it. What we want now is to concentrate on the representation by series.

Definition 9.7. Let f be a function which is differentiable to all orders in a neighborhood of the
point c. The Taylor series for f centered at c is

Tcf(x) =
∞∑

n=0

f (n)(c)
n!

(x− c)n

If c is the origin, this series is called the Maclaurin series for f .

Proposition 9.22. Suppose that f is a function which has derivatives of all orders in the interval
(c− a, c + a). Let Mn be a bound for the nth derivative of f in the interval. If the sequence

(9.9)
Mn

n!
|x− c|n → 0,

converges to zero for all x in the interval, then f is given by its Taylor series:

f(x) =
∞∑

n=0

f (n)(c)
n!

(x− c)n

in (c− a, c + a).

This gives us another way of seeing that ex has the Maclaurin series

ex =
∞∑

n=0

xn

n!
,

since the nth derivative of ex is still ex, and its value at x = 0 is 1. By a parallel calculation we
obtain the power series representation of ex centered at any point:
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Example 9.31. For c any point, the function ex has the Taylor series representation centered at
c:

ex =
∞∑

n=0

ec

n!
(x− c)n .

We do have to verify that the remainders converge to zero, that is, the terms (9.9) converge to
zero. Since ex is an increasing function, its maximum in the interval [c− a, c + a] is at x = a + c,
so we can take Mn = ea+c. Then, for the exponential function we have

lim
n→∞

Mn

n!
|x− c|n = ea+c lim

n→∞

|x− c|n

n!
= 0

by example 9.6.

It is useful to make the following observation

Proposition 9.22. Suppose that f has a power series representation:

(9.10) f(x) =
∞∑

n=0

an(x− c)n .

Then, this is its Taylor series. More precisely:

an =
f (n)(c)

n!
.

This is easy to see; if we differentiate (9.10) k times we obtain:

f (k)(x) =
∞∑

n=k

n(n− 1) · · · (n− k)an(x− c)n−k .

Now, let x = c: only the first term remains since all terms but the first have the factor x− c. Thus
we obtain f (k)(c) = k!ak,

So, if we have found a power series representative of a function, then that is automatically the
Taylor series for the function.

Example 9.33. Find the Maclaurin series for the function f(x) = 1 − x + 5x2 − x3. Since a
polynomial is already expressed as a sum of powers of x, that expression is a power series, and
thus the Maclaurin series for the polynomial.

Example 9.34. Find the Taylor series centered at c = 1 for the function f(x) = 1− x + 5x2− x3.
We have to find the values of the derivatives of f at c = 1:

f(1) = 4 ,

f ′(x) = −1 + 10x− 3x2 , so f ′(1) = 6 ,

f ′′(x) = 10− 6x , so f ′(1) = 4 ,

f ′′′(x) = −6 , so f ′(1) = −6 ,
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and all higher derivatives are zero. Thus the Taylor series is

f(x) = 4 + 6(x− 1) +
4
2!

(x− 1)2 − 6
3!

(x− 1)3 = 4 + 6(x− 1) + 2(x− 1)2 − (x− 1)3 .

We can find the Maclaurin series for many functions, so long as we know how to differentiate them.
Following is a list of some important Maclaurin series.

Proposition 9.23.

(a)
1

1− x
=

∞∑
n=0

xn, |x| < 1

(b) ex =
∞∑

n=0

xn

n!

(c) cos x =
∞∑

n=0

(−1)n

(2n)!
x2n

(d) sinx =
∞∑

n=0

(−1)n

(2n + 1)!
x2n+1

(e) arctanx =
∞∑

n=0

(−1)n

2n + 1
x2n+1

We have already seen how to get (a), (b) and (e). For the trigonometric functions, we proceed as
follows. First, the cosine:

f(0) = 1 ,

f ′(x) = − sinx , so f ′(1) = 0 ,

f ′′(x) = − cos x , so f ′(1) = −1 ,

f ′′′(x) = sin x , so f ′(1) = 0 .

f (iv)(x) = cos x , so f(iv)(1) = 1 .

Thus, up to four terms we have

cos x = 1− x2

2!
+

x4

4!
+ · · · .

But, now, since we have returned to cos x, the cycle {1, 0,−1, 0} repeats itself again and again. We
conclude that

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+

x8

8!
· · · .,

which can be rewritten as (c) of proposition 9.23.
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As another example, we calculate the Taylor series for lnx for x near 1, using the fact that lnx is
the integral of 1/x. Start with the geometric series

1
1− t

=
∞∑

n=0

tn for |t| < 1 .

Substitute x = 1− t:

1
x

=
∞∑

n=0

(1− x)n =
∞∑

n=0

(−1)n(x− 1)n for |x− 1| < 1 .

Integrate for the final result:

lnx =
∞∑

n=0

(−1)n (x− 1)n+1

n + 1
for |x− 1| < 1 .

Problems 9.5.

1. Find the Taylor series centered at the origin for the function

F (x) =
∫ x

0

dt

1− t4
.

2. Find the Taylor series centered at the origin for the antiderivative (indefinite integral) of

f(x) =
e−x2 − 1

x
.

3. Find the Taylor series centered at the origin for the function∫ x

0

1 + t2

1− t2
dt .

4. Find the Taylor series centered at the origin for the function

1
(1− x2)2

.

5. Find the Taylor expansion of x3 centered at the point -1.

6. Find the Taylor series centered at the origin for the function

coshx =
ex + e−x

2

7. Find the first 5 coefficients of the Maclaurin series for f(x) = ex cos x.

8. Expand f(x) = 1 + x− 3x2 + x9 in a Maclaurin series.

189



9. For the Maclaurin series expansion:

t

2− t2
=

∞∑
n=0

antn

find the values of a0, a1, a2, a3.

10. Since the concept of convergence of a power series depends only on the notion of the distance
between two numbers a, b, given by the absolute value |a − b|, we can consider series defined for
complex numbers:

∞∑
n=0

anzn where z = x + iy

with x and y real numbers, i =
√
−1 and |z| =

√
x2 + y2. With this definition we see (with the

same proof) that the series
∞∑

n=0

zn

n!

converges for all z. This we call the complex exponential ez. Show that, for real numbers x:

eix = cos x + i sinx .
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