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Abstract

We explore properties of a generalized \coloring" of a knot including

existence, changes in regards to satellite knots and speci�cally composi-

tion, non-colorable knots. We also explore homomorphisms from the knot

group to the dihedral group of a knot and provide computer programs de-

veloped in our research of knots. We also provide a database and online

resource for future investigations into these arenas.

1 Introduction

The idea of coloration probably has roots as far back as the idea of strands, since
it is but a simple extension of the idea. Since the trefoil knot is tricolorable,
undoubtedly it was this discovery that prompted the study of tricolorability
of other knots and as an invariant. Of course, it was not long after this that
a generalized idea of colorability was concocted. This general colorability, or
n-Coloration, is the topic of this study.

Since the n-Coloration of a knot can be found using its crossing matrix,
it is relatively easy to calculate. This at �rst might seem like a gold mine of
information on all knots, but colorability is not an invariant for all knots, as
we shall see. In fact, its distinguishing power is not comparable to any of the
other common invariants, but its usefulness lies in both its simplicity and its
ease of application. Also, as we shall see, the theory of n-Coloration yields some
interesting relations to existing theory concerning knots.

We �rst provide some de�nitions to help us maneuver in the language of
knots, colorations, and operations on these:

De�nition 1 A knot is a closed, one dimensional, and non-intersecting curve
in three dimensional space. From a more set-theoretic standpoint, a knot is a
homeomorphism that maps a circle into three dimensional space.

De�nition 2 A homeomorphism is generally considered to be an additive and
continuous function. Additive refers to the following property:

g(A+ B) = g(A) + g(B)
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Also, two objects are considered homeomorphic if there is a homeomorphism
between them.

De�nition 3 An ambient isotopy, also known as an isotopy, is a continuous
deformation of a knot or link. This represents the \rubber-sheet geometry" as-
pect of topology, where the knot or link may be bent, twisted, stretched, or pulled.
Under no circumstances, however, may the curve be allowed to intersect itself
or be cut.

De�nition 4 Any group knots or links are considered ambiently isotopic or
isotopic if there exists an ambient isotopy between them. Such a group is called
an isotopic class. All members of an isotopic class, called projections, are con-
sidered to be the same knot or link.

De�nition 5 An isotopic class is a group of knots or links that are ambiently
isotopic, or can be continuously deformed into each other. For example, the
unknot and �gure-eight below belong to the same isotopic class because they can
be deformed into each other through a type I Reidemeister move.

De�nition 6 A projection is a speci�c member of an isotopic class. For exam-
ple, the unknot and �gure-eight below are two di�erent projections of the same
isotopic class.

De�nition 7 The unknot, also known as the \trivial knot", is simply a circle
embedded in three-dimensional space with no crossings and all other projections
of the same isotopic class. The circle and the �gure-eight are both considered
unknots.

De�nition 8 A link is a group of knots or unknots embedded in three dimen-
sional space. Each knot or unknot embedded in the link is called a component.
A link with only one component is usually just referred to as a knot or unknot.
A link in which another member of the link's isotopic class has components
that can each be bounded with non-overlapping spheres, or otherwise separated
components, is called the trivial link.

De�nition 9 Tricolorability deals with the ability to use three di�erent "colors"
to color a knot. A knot is colored by individual strands, where a strand is the
part of a two-dimensional representation of a knot between undercrossings. A
knot is tricolorable if:
Rule 1: At every crossing, either all three strands are of a di�erent color, or the
same color.
Rule 2: All three colors are used in coloring the knot.
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2 Existence of Colorings

In this section it is shown that the existence of an `-coloration of a given projec-
tion of a knot implies the (non)existence of an `-coloration of any projection of
that knot up to Reidemeister moves I, II, and III. Because any ambient isotopy
of a knot compliment space is equivalent to a series of Reidemeister moves and
planar isotopies of a given projection of the knot, existence of an `-coloration,
or `-colorability, is a knot invariant.

Given a projection of a knot to the plane, label its n strands a1; : : : ; an. Each
crossing then corresponds to a linear expression given by: ai+ aj � 2ak , where
ai and aj are the two understrands of the crossing and ak is the overcrossing.

As each strand has exactly two ends, and each crossing has exactly two
understrands or ends, there are always n crossings for given n strands. Thus, a
given knot projection and a given labelling of its n strands determines a so-called
'crossing matrix' of n� n dimensions.

Important: Because a permutation of the labelling corresponds to a series of
column transpositions, many important properties (i.e. null space, determinant
of the matrix (minors) up to sign) of the matrix are invariant of labelling.

To be `-colorable, a crossing matrix of a projection must have a null space
of dimension two or greater when taken mod `. This means that there is at
least one solution which is fundamentally di�erent from the trivial coloration
a; : : : ; a.

Suppose a projection is `-colorable:

Reidemeister Case 1

In the �rst Reidemeister Case, a strand is given a single twist or a single twist
is untwisted. The expression for the crossing of a single twist is a1 + a2 � 2a1.
Whatever ` is, a1 must be congruent to a2, mod `. Thus, if a projection con-
tains a single twist and is `-colorable, the two strands must indeed be considered
as one, 'colorwise', and so a pair of strands which compose a single twist is equiv-
alent to a single strand in our coloration system. This shows that colorability
is invariant under a type I Reidemeister move.

Reidemeister Case 2

For the second Reidemeister Case, a local neighborhood of the projection con-
taining only two disjoint sections of strands which do not cross each other is
transformed such that the piece of the knot corresponding to a strand a1 dips
underneath the piece of the knot corresponding to a strand a2. There are now
four strands a1; a2; a3; a4 = a1 (see picture) and two crossings which (both)
must satisfy the equation a1 + a3 � 2a2 � 0 mod ` if n-colorability is to be
met. Since there is no other restriction on a3 (as a3 is entirely within the local
neighborhood), there is no potential change in the rest of the projection if we
designate a3 = 2a2 � a1. Because nothing is changed outside the local section,
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colorability is preserved. Conversely, suppose we have a local section of a projec-
tion (which is `-colorable) which contains three sections of strands with numbers
a1; a2; a3 and a single strand a4, and two crossings, a1 + a4 � 2a2 � 0 mod `

and a3+a4�2a2 � 0 mod `. Combining the two equations gives a4 � 2a2�a1
mod ` ) a3 + 2a2 � a1 � 2a2 � a3 � a1 � 0 mod `. Therefore a1 must be
congruent to a3 for the projection to be `-colorable. If we transform this local
section so that a4 is deleted and the sections with numbers a1 and a3 become
one section of strand, the inverse of the Reidemeister move II, we do not alter
anything outside the local neighborhood, and so colorability is preserved under
the second Reidemeister Case.

Reidemeister Case 3

In the Reidemeister Case 3, there is a local section of the projection with one
stationary intersection a1+a3�2a2 and three strands corresponding to a section
of the knot passing 'underneath' the local section. If the three strands a4; a5; a6
pass on the side of the crossing such that a4+a5�2a1 � 0 mod ` and a5+a6�
2a2 � 0 mod `, then 'shifting' to the other side should not change colorability,
i.e. a4 + a05 � 2a2 � 0 mod ` and a05 + a6 � 2a3 � 0 mod `. This is because,
if we combine both sets of equations such that the a5's are eliminated, we see
that (a4 � a6) + (2a2 � 2a1) � (a4 � a6) + (2a3 � 2a2) mod `, which implies
that a1 + a3 � 2a2 � 0 mod `. So the side which a4; a5; a6 passes under (see
picture) is trivial i� the stationary intersection is consistent with `-colorability.
Thus colorability is preserved under a Reidemeister move III.

3 Operations on Knots and Their Various Ef-

fects on Coloring

There exist various ways of constructing knots from preexisting ones. \Mu-
tating" a knot and forming satellite knots are two of the simplest. We are
interested in the coloration properties modi�ed knots have and their relation to
the coloration properties of their \parent" knots.

The easiest way to get a new knot from a pair of known knots is to compose
them. This is done by cutting each of the \factor" knots open and attaching
the resulting loose strands in such a way as to create a single knot.

Composition of knots can be generalized in a way that gives rise to the so-
called satellite knots. Given two knots, K1 and K2, choose two tori, T1, the
boundary of an �� neighborhood of K1 and T2, such that K2 � S3 � T2. Now
remove the component of S3 � T1 containing the knot and glue in its place the
portion of S3 � T2 containing K2 such that the meridians and longitudes of
the Ti are mapped, respectively, to each other. K1 and K2 are known as the
companion and the satellite, respectively. A longitude on a torus embedded in
S3 is simply a curve that forms the boundary of an orientate surface in the
complement of said torus.
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Figure 1: A (rational) tangle.
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Figure 2: A knot and a mutant. These two are actually equivalent as knots too!

A satellite of two knots is the same as their sum if the intersection K2\M of
K2 and some meridional discM of T2 contains only one point. The composition
of K1 and K2 will be denoted K1#K2.

Mutating a knot is simpler than the formation of satellite knots. That
simplicity has its price though: if a knot can be p-colored, so can any of its
mutants.

A tangle is like a knot but, instead of being closed, has four points with
neighborhoods homeomorphic to [0; 1), the endpoints of the tangle correspond-
ing to points on the boundary of a closed ball B � S3 that contains the tangle.
See Figure 1.

Note that a subset of a knot can be a tangle. Simply try to surround a
portion of the knot by a sphere such that it is pierced by the knot exactly four
times. The portions of the knot \inside" and \outside" of such a sphere are
tangles. Referring to the �gure, a mutant of a knot is a new knot obtained by
rotating the sphere, along with it's contents, 180� so that A and B, C and D,
are exchanged.
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Figure 3: Coloring the sum of two knots.

Figure 4: A satellite knot with trefoil as companion and torus knot (2,5) as
satellite

Satellites

One property K#L has is that if K is p colorable and L is q colorable, then
K#L is both p and q colorable. To p color the sum, simply color all of the
strands inherited from K as if coloring K. Suppose the strand s of K was cut
in the process of forming the sum. If it would have had color c, color the pieces,
s0, s00, of s, along with all the strands from L, c. See Figure 3. This suggests
the following hypothesis: If a knot is prime, i.e. isn't the sum of two knots,
then it cannot be colored in more than one way, for multiple colorings should
correspond to factor knots. Alas, this is not true, as will be demonstrated in
Section 4.

How do satellite knots behave under coloration? First, let's look at an
example.

Example 1 Figure 4 shows a satellite knot with trefoil as companion, and the
(2,5) torus knot as satellite. (Watch where those longitudes and meridians go!)
A simple (but very time consuming, if done by hand!) calculation reveals that
this knot is 5� colorable, like its satellite. Note that it isn't 3� colorable, like
its companion, the trefoil.

When considering a satellite knot, it may be of help to consider any obvious
colorings it may possess. Setting Ki and Ti as above, it is safe to assume that
K2 sits in T2 as in Figure 5. Using this projection simpli�es the construction
of the satellite knot. What happens when we make the satellite knot? If the
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Figure 5: A satellite can sit in its torus like this.
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Figure 6: Kinoshita-Terasaka mutants.

number of strands that wrap around T2 is odd, we're in business: the satellite
knot is colorable as the companion is. The next picture indicates the situation
for satellites with three \strands."The principle generalizes easily. vspace.5cm
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If the number of strands is even we can't say anything. Figure 4. shows that
satellite knots don't, in general, share colorabilities with their companions.

Mutants

Any mutant of a knot has the same colorabilities its parent knot has. I hope
the following example will induce the reader to �nd out more.

Example 2 The two knots pictured in Figure 6 have the same colorabilities.
In fact, they can't even be distinguished from the unknot using coloration tech-
niques!
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4 Multicolorability and Colorability of Higher

Nullities

From section 3 we learned that if the knot K is formed from the composition
of the knots K1 and K2 which are p and q colorable respectively, then K is
both p and q colorable. Thus any composite knot is at least bi-colorable if its
components have di�erent colorabilities. As we shall see below the converse
is not true. It is natural to ask whether there are any prime knots (knots
which are not the sum of two other knots) which are multicolorable? If the
components of a knot both have the same colorability can anything be said
about the composite colorability? The de�nition of `-colorability is that the
crossing matrix has nullity of at least two modulo `, are there any knots which
have nullity three or higher? To answer these questions we will �rst need to
clarify some de�nitions and use our linear algebra skills.

We say the knot projection K, with n crossings, is ` colorable if and only if
the crossing matrix CK mod ` has nullity � where `; � 2 N and � � 2. Well
this is the same thing as saying there exists � distinct strands such that: to
each of those � strands any integer from 0 to `�1 can be assigned to the strand
and there exist numberings (colorings) of the other n � � strands (which are
dependent on the numberings of the � strands, but not necessarily uniquely
dependent) such that at each of the n crossings: x + y � 2 z mod ` where x; y
represent the numbers assigned to the understrands and z the number assigned
to the overstrand. See margin.

z

y

x

CK is the n�nmatrix whose rows correspond to the equations x+y�2 z = 0
for the n di�erent crossings and the columns are the variables which correspond
to the n strands. Let the n�1 column vector v represent a coloration of the knot
projection, where the ith component of v is vi and represents the coloring of the
ith strand. In symbolic notation K is ` colorable , 9� � 2 9 distinct strands
i1; i2; � � � ; i�, such that 8 colorings q1; q2; � � � ; q� 2 Z ` , there is a coloration
~v 2 Zn

` with those colorings (8 j 2 f1; � � � ; �g vij = qj), such that ~v is a valid

coloration modulo ` (CK � ~v � ~0 mod `). Thus there are at least `� di�erent
`-colorations. For example the simplest case K is `-colorable with nullity two
then 9 i; j j i 6= j 8 q; p 2 Z ` 9~v 2 Zn

` with vi = q vj = p and CK � ~v � ~0 mod `

Since there is no privileged frame of reference for the ordering of the strands
in the knot projection, the columns of the crossing matrix can be permuted
(reordered) without a�ecting the colorability of the knot. Thus there exits an
n � n permutation matrix P such that the � distinct strands, whose colorings
can be chosen freely, correspond to the last � columns of the matrix CK � P .
Using this new permuted crossing matrix we can �nd � linearly independent
coloration vectors v1; v2; � � � ; v� of K. These � column vectors can be placed
in a n � � matrix V , where the columns of V are these � coloration vectors.
The span of these vectors is in the modular null-space of CK � P , however these
vectors are not necessarily a basis for the null-space, but if ` is a prime then
they are. Since any integral linear combination of valid colorations is a valid
coloration, we can let ~d be � � 1 vector that represents a linear combination
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with integer components, then the n�1 column vector V � ~d is a valid coloration
of CK �P . Knowing that the colorings of the last � strands can be freely chosen
and a little linear algebra, we can require the vectors v1; v2; � � � ; v� to take on
the form that the ith vector's n� i+1 component is one and all the components
beneath the one are zero. Thus there is a V of the form0

BBBBBBBBBBBBBBBBBBBB@

? ? � � � ? ? ? 1
...

...
. . .

...
...

...
...

? ? � � � ? ? ? 1
1 0 � � � 0 0 0 1

0 1
. . .

...
...

...
...

0 0
. . . 0 0 0 1

0 0
. . . 1 0 0 1

0 0
. . . 0 1 0 1

...
...

. . . 0 0 1 1
0 0 � � � 0 0 0 1

1
CCCCCCCCCCCCCCCCCCCCA

if � = 3 then V is of the form

V =

0
BBBBBBB@

? ? 1
...

...
...

? ? 1
1 0 1
0 1 1
0 0 1

1
CCCCCCCA

and the simplest case if � = 2 then

V =

0
BBBBB@

? 1
...

...
? 1
1 1
0 1

1
CCCCCA

K is `-colorable with nullity � � 2 if and only if there exists a permu-
tation matrix P and a matrix V of the preceding form such that for all linear
combination vectors ~d 2 Z

�
` the congruence CK

n
�
n � P n

�
n � V n

�
� � ~d1

�
�
1 � ~0 n

�
1

mod ` is satis�ed.
Ok now that you have explicitly de�ned colorability with nullity �. How

does one �nd out if a knot is `-colorable, and what value the nullity of CK takes
on modulo `? And once one knows that, how can one �nd these � vectors whose
span is in the modular null-space? To answer those questions we simply look
at the Smith and Hermite normal forms of the crossing matrix CK . So lets just
refresh our memories of what these forms are.
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The Hermite normal form of a matrix A is an upper triangular matrix H

with rank(A) = the number of nonzero rows of H . The Hermite normal form is
obtained by doing elementary row operations on A. This includes interchanging
rows, multiplying through a row by -1, and adding an integral multiple of one
row to another. The Smith normal form S, of an n � m rectangular matrix
A of integers, is a diagonal matrix where rank(A) = number of nonzero rows

(columns) of S; sign(Si;i) = 1 8i; Si;i divides Si+1;i+18i � rank(A); and
rQ

i=1
Si;i

divides det(M) for all minors M of rank 0 < r � rank(A). Hence if n = m and

rank(A) = n then jdet(A)j =
nQ
i=1

Si;i. The Smith normal form is obtained by

doing elementary row and column operations on A. This includes interchanging
rows (columns), multiplying through a row (column) by -1, and adding integral
multiples of one row (column) to another.

Since the algorithm for the Hermite normal form does not include column
swapping, all of the colorabilities of K are not necessarily visible along the
diagonal of the matrix H . In fact there exist crossing matrixes such that H
modulo ` only has one row of zeros, despite the fact that H and CK both have
nullity two modulo `. For example if take the following crossing matrix for 74,
we attain the following Hermite form.

CK =

0
BBBBBBBB@

1 0 0 �2 0 0 1
1 1 0 0 0 �2 0
0 1 1 0 �2 0 0
�2 0 1 1 0 0 0
0 0 0 1 1 0 �2
0 �2 0 0 1 1 0
0 0 �2 0 0 1 1

1
CCCCCCCCA

H =

0
BBBBBBBB@

1 0 0 0 2 0 �3
0 1 0 0 1 1 �3
0 0 1 0 0 2 �3
0 0 0 1 1 0 �2
0 0 0 0 3 3 �6
0 0 0 0 0 5 �5
0 0 0 0 0 0 0

1
CCCCCCCCA

But if the �fth and sixth column of CK were to be interchanged then the
diagonal of H would be the same as the Smith form, namely �ve one's, a �fteen
and a zero. Thus the original Hermite form doesn't explicitly reveal 74's 15-
colorability.

Fortunately the Smith normal form does take advantage of column opera-
tions so therefor the colorabilities of a knot K along with their corresponding
nullities are readably visible along the diagonal of the Smith normal form S of
a crossing matrix CK . Namely the knot K is `-colorable if and only if ` divides
the last/greatest non-zero diagonal element of the Smith normal form S. This
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can be extended to K is `-colorable with nullity � if and only if ` divides all
components of the last � rows and columns of the Smith normal form S.

Once the colorabilities of a knot are known the colorations of the projection
K are easily determined by back substituting the colorings of the freely choiss-
able strands into the Hermite normal form H of the crossing matrix CK and
solving the corresponding congruences modulo `. Although the strands can be
chosen freely, they do not necessarily de�ne a unique coloration. For example
the knot 948 has nullity 2 mod 9 but as the following pictures show, the colorings
of the top two strands were �xed but the colorings of the lower strands are not
uniquely de�ned.

Well one may think that this implies that the knot 948 has nullity 3 mod 9
but this is not the case since these three colorations are the only valid colorations
with the top two strands having these values of one and zero. If it had nullity
3 then there would be nine di�erent colorations with the top two strands �xed.

This phenomena occurs when a nontrivial divisor p of ` has
WHAT GOES HERE??

Theorem 1 If K is `-colorable with nullity � then 8p j 1 < p < ` and p j ` then
K is p-colorable with nullity of at least �.

Proof 1 After row and column reduction over the integers of the crossing ma-
trix CK , the Smith normal form has � rows which are congruent to the zero row
modulo `, if p divides ` then these same � rows are also the zero row modulo p.
If ~x � ~0 mod ` and p j ` then ~x � ~0 mod p.

Theorem 2 If K is p-colorable then for all k there exist valid non-trivial kp-
colorations even if K is not kp-colorable.

Proof 2 Let v be vector corresponding to any valid p-coloration. To obtain a
valid kp-coloration, just multiply v by the scalar k and add to that any integral
multiple of the vector of all ones v1. If CK � v � ~0 mod p and CK � v1 � ~0 mod
kp then 8 m CK �(kv +mv1) � ~0 mod kp. Let u and v be di�erent p-colorations
then ku and kv are not necessarily di�erent kp-colorations, because ~x 6� ~u mod
p 6, k~x 6� k~u mod kp Therefor there is no implication that K is kp-colorable.
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Theorem 3 If K is p-colorable and q-colorable and p and q are relatively prime
then K is also pq-colorable.

Proof 3 Let s be the greatest non-zero diagonal element of the Smith normal
form of CK then p j s and q j s and gcd (p; q) = 1 ) pq j s ) K is pq-colorable.

Let L :=
n�1Q
i=1

Si;i 8 i; j jdet(Mi;j)j = L where Mi;j is the i
th jth minor of CK

K is not L-colorable, 9` such thatK is `-colorable with nullity of at least 3.
These last theorems put to rest a couple of questions.
If a knot is both p and q colorable and p 6= q then is the knot a composite

knot? No. 820 and 91 are both 3 and 9 colorable; 74; 821; 92; and 937 are all 3; 5;
and 15 colorable; and 77; 85; and 94 are all 3; 7; and 21 colorable and all of these
knots are prime.

Can you construct a knot that is q-colorable? Yes, if q can be factored into a
�nite set of integers which are all relatively prime to each other and each integer
is less than or equal to 61 then this q-colorable knot can be constructed from the
composition of prime knots with nine or less crossings, seeing how 8p � 61 there
exists a prime knot with crossing number less than ten which is p-colorable. If
q can not be factored in such a way then the prime knots of ten and higher
crossings have to be implemented in order to construct this knot.

Can you construct a knot that is q-colorable with nullity � � 3? Yes if q
satis�es the previous condition then take the knot K which is q-colorable and
compose it with itself � � 1 times.

Well those were composite knots, are there any prime knots with nullity
� � 3? Yes 818; 935; 946; 947; and 948 all have nullity 3 modulo 3; 940; and 949
both have nullity 3 modulo 5; and 941 has nullity 3 modulo 7. Here are three
pictures of the 27 di�erent 3-colorations of 948, showing how the the colorings of
the upper two strands were �xed and the coloring of the lower strand was freely
varied, demonstrating how it takes the colorings of three strands to uniquely
determine a valid coloration.
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Figure 7: A f�2; 3; 5g pretzel knot.

5 Visible vs. Invisible Knots

Previous sections have been devoted to �nding colorations for knots and de-
termining properties of those colorations. Here, the goal is to investigate what
kinds of knots are colorable and when. Speci�cally we will explore colorations
for pretzel knots and (p,p-1) torus knots.

Now we will attempt to construct a coloring for the fi,j,kg pretzle knot.
For simplicity we will assume that i; j; k > 0, however, none of the following
arguments depend on this and we will arive at the same conclusions if we allow
the signs to vary.

De�nition 10 A knot K is called invisible if there does not exist n such that K
is colorable (mod n), and is therefore indistinguishable from the unknot through
the scope of colorability.

Pretzel Knots

Recall that a pretzle knot fi; j; kg is constructed from the rational tangles i,j,k
by the formula i � 0 + j � 0 + k � 0 and then connecting the top two strands
together and the bottom two strands. An example of a f�2; 3; 5g prezle knot is
depicted in Fig. 7.

In �gure 8, we have colored 5 of the strands (a; b; p; q; r). From the properties
of colorations (as described in sec. Arron or mabey Allen) we know that to
any coloration scheme we may perform the operations of adding any integer or
multiplying by any integer and the result will itself be a coloration. ie, if...

2a� b� c = 0(where a is the over strand and b and c are the understrands)
(1)

then...
2(a+ d)� (b+ d)� (c+ d) = 0
and...
2af � bf � cf = 0
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Figure 8: A coloring of a general 3-component pretzel knot.

Because of this fact, we can, without loss of generality, let a = 0 and b = 1,
and then use our coloration formula to propagate these colors down the i twists.
We quickly see that r = i and p = i+ 1.

Knowing that the incoming strands for the second component of our knot
are labled 1 and x, we may follow the crossing formula down the j twists and
�nd that p=jx-j+1=i+1 and q=(j+1)x-j. Like wise, the third component has
incoming strands x and 0 yielding the colors q = (1�k)x and r = �kx as shown
in Figure 9.

This gives us three linearly dependent equations(placing restrictions on our
variables), two of which are listed below.

i = �kx

jx = j + i

If we multiply these equations together our x's fall out and we get the simple
equation

ji+ jk + ik = 0(mod n) (2)

and the only time an appropriate n cannot be chosen to satisfy this equation is
when

ji+ jk + ik = �1

because whenever jji+ jk+ ikj 6= 1 we can always choose an appropriate n,
such that it will equal 0 mod n.

Corolary 1 if i,j, and k share the same sign, then i,j,k is always colorable.

proof: jij + ik + jkj > 1.

Corrolary 1 The f-i,2i,2ig pretzel knot is always colorable mod any n.
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0
1

2

i j
k

i=-kx

(j+1)x-j=(1-k)x

i+1=jx-j+1

Figure 9: Some simple relations for the coloring of a general 3 component pretzel
knot.

PROOF:
�i � 2i+�i � 2i+ 2i � 2i = 0 (mod n) 8 n

Corollary 1 If the 3 component pretzel knot fi,j,kg is invisible, then i, j, and
k must be relatively prime. Proof: if n devides i and j, then n must devide 1
since i � j + i � k + j � k = �1

Coloring A General Pretzle Knot

We now generalize this to a k-component pretzle knot K = fC0, C1, ..., Ck�1g.

Theorem 1

k�1X
i=0

C0 � C1 � C2 � ::: �cCi � ::: � Ck�1 = �1, K invisible (3)

Proof 4 We shall color the strands of our knot according to the scheme in �gure
10, where Cj 's represent the number of crossings in the j'th tangle component,
aj 's are the colors assigned to the strands at the top of those components, and
Pj 's represent the colors of the strands coming out of the bottom of the pretzle
components.

Using the equation for colors at a crossing (2a� b� c = 0) as before we �nd
that...

Pj = (Cj�1 + 1)aj � Cj�1aj�1 = Cjaj+1 � (Cj � 1)aj (4)

for j 2 Z/k Which can be re-writen as

15
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Figure 10: A gerneral coloring for a k component pretzel knot.

aj+1 =
(Cj�1 + Cj)aj � Cj�1aj�1

Cj

(5)

or aj =
(Cj�2 + Cj�1)aj�1 � Cj�2aj�2

Cj�1
(6)

We say that aj(k) is the j'th color of a pretzel knot of k components (0...k-1).
If we let a0 = 0, a1 = 1 and then apply equation 6 we get

a0(i) = 0 =
(Ck�1 + Ck)ai � Ck�1ak�1

Ck

(7)

It turns out that there is a more simple equation for a0(k), namely

a0(k) =
C0

C1
+
C0

C2
+ :::+

C0

Ck�1
+ 1 (8)

which can be shown by induction and the proof is omited. >From this we
get that K is colorable implies that

k�1X
i=0

C0 � C1 � ::: �cCi � ::: � Ck�1 � 0 (mod n)

) K invisible if
k�1X
i=0

C0 � C1 � ::: �cCi � ::: � Ck�1 = �1

which ends our proof.
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1 i i+1

Figure 11: This shows a typical generator for the braid group on q strands.

Figure 12: This shows how to close the ends of a braid knot.

Torus Knots

De�nition 1 A Torus knot T is one that is embedible on the surface of a torus,
such that it never intersects itslef. Such a knot can be represented by to integers
(p,q) where p is the number of times the knot loops around the meridian of the
torus and q is the number of times it loops around the longitude.

Theorem 1 A (p,p-1) torus knot is always colorable (mod n). Moreover, if p
is odd then n = p (or any factor of p) and if p is even then n = p� 1 (or any
factor of p-1).

It is easy to show that all torus knots can be represented by braid knots (de-
scribed in section ??). They are always of the form

pY
i=1

�1 � �2 � ::: � �q�1 = (p; q) (9)

where �i's are the q-1 generators (see �gure 11) of the braid group on q strands.
The knot is then formed by connecting the strands at the top of the braid to
those at the bottom in the cannonical manner depicted in �gure 12

In this papper we will refer to the word �1 � �2 � ::: � �q�1 as a \gword" and
then represent a torus knot (p,q) as (gwordq)

p and from now on we will only
look at knots of the form (p,p-1).

Now let us try to color this (p,p-1) torus knot. We start by coloring the
strands at the bottom of our braid knot a0;1,a0;2,...,a0;p�1 and then labeling the

17
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a
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p,p-1a

p-1,p-1a

2,p-1

0,p-1

1,p-1

0,2

0,1

Figure 13: This is a general coloration of the (p,p-1) torus knot

top strands comming out of the i'th gword as ai;1,ai;2,..,ai;p�1 however many
of these colors will be repeats, so only the relevent colors are drawn in Figure 13.

From the crossing equation we can see that if i < p then

ai;p�1 =

p�1X
k=1

[2(�1)k�p+1 + (�1)k�p+1�i(k)]a0;k (10)

where � is the kroneker delta function

�i(k) =

�
1 if i = k

0 if i 6= k

and if i > 1 then
ai;p�1 = a0;i�1 (11)

and for i = p we get

a0;p�1 = ap;p�1 =

p�1X
k=1

[2(�1)k�p+1 + (�1)p�1�1(k)]ak;p�1 (12)

Let a0;1 = 0 & a0;2 = 1
and now take a look at the case when p is odd.

P odd

If p is odd then we can show that a0;i = i� 1. First we know that it is true for
a0;1 and ao;2 since we colored them 0 and 1 respectively. Then assume that it

18



is true for a0;k and prove for a0;k+1.
So, if k even we get

a0;k � a0;1 = k � 1 (13)

= (2a0; p� 1� 2a0;p�2 + :::� a0;k+1 + 2a0;k � :::+ 2a0;2)

�(2a0; p� 1� 2a0;p�2 + :::� 3a0;k+1 + 2a0;k � :::+ 3a0;2)

= a0;k+1 � 1

) a0;k+1 = k

and if k is odd we get

a0;k � a0;1 = k � 1 (14)

= (2a0; p� 1� 2a0;p�2 + :::+ 3a0;k+1 + 2a0;k � :::+ 2a0;2)

�(2a0; p� 1� 2a0;p�2 + :::+ 2a0;k+1 + 2a0;k � :::+ 3a0;2)

= a0;k+1 � 1

and we get the same thing for a0;k+1 so we have proven that a0;k must equal
k � 1, and our equation for a0;p�1 then simpli�es to the following.

a0;p�1 =

ap;p�1 = (

p�1X
k=2

2(�1)kak;p�1)� a1;p�1

= (

p�1X
k=2

2(�1)ka0;k�1)� (

p�1X
k=1

[2(�1)k + �i(k)]a0;k�1)

= 2a0;1 � 2a0;2 + 2a0;3 + :::+ 2a0;p�2

�(�a0;1 + 2a0;2 � 2a0;3 + :::� 2a0;p�2 + 2a0;p�1)

= 3a0;1 � 4a0;2 + 4a0;3 � :::+ 4a0; p� 2� 2a0;p�1

Using the fact that a0;i = i� 1 we now obtain

p� 2 = 3(0)� 4(1) + 4(2)� :::+ 4(p� 3)� 2(p� 2)

3(p� 2) =
4(p� 3)

2
3p� 6 = 2p� 6

(15)

) p � 0 (mod n)

) choosing n = p (or any factor of p) will yield a coloration for the knot.
Now lets look at the case when p is even.
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P even

We saw that when p is odd we get a0;k = k � 1. If we let p even then we will
see that a0;k � k � 1 (mod 2). We know that this is true for i = 1 and 2, so
assume that it is true for k.
If k is even then a0;k = 1 and

a0;k � a0;1 = 1

= (2a0; p� 1� 2a0;p�2 + :::� 3a0;k+1 + 2a0;k � :::� 2a0;2)

�(2a0; p� 1� 2a0;p�2 + :::� 2a0;k+1 + 2a0;k � :::� 3a0;2)

= �a0;k+1 + 1

) a0;k+1 = 0

similarly, if k is odd then

a0;k � a0;1 = 0 (16)

= (2a0; p� 1� 2a0;p�2 + :::+ a0;k+1 + 2a0;k � :::� 2a0;2)

�(2a0; p� 1� 2a0;p�2 + :::+ 2a0;k+1 + 2a0;k � :::� 3a0;2)

= �a0;k+1 + 1

) a0;k+1 = 1

Now pluging this into our equation for ai;p�1 we get

a0;1 = a2;p�1 = 0 (17)

= (

p�1X
k=1

[2(�1)k�1 � �2(k)]a0;k)

= 2a0;1 � 3a0;2 +

p�1X
k=3

2(�1)k�1a0;k

= �3 + 2a0;3 � 2a0;4 + 2a0;5 � :::� 2a0;p�2 + 2a0;p�1

= �3� 2

�
p� 4

2

�
= �p+ 1

) p� 1 � 0 (mod n)

) choosing n = p� 1 (or any factor of p-1) will yield a coloration for the knot.

Corolary 1

(p; q) �= (q; p)

Corolary 1 A (p-1,p) torus knot is always colorable (mod n) and n = p if p
odd, n = p� 1 if p even.

Corolary 1 A (p,p-1) Torus knot with nulity N (mod n) can be constructed
by letting p be the product of N distinct primes.

20



6 n-Coloration as a Property of the Knot Group

The fundamental problem of knot theory [1] is the following: Given knots A and
B, determine whether they are equivalent under ambient isotopy. The di�culty
lies in the following: As we compare the properties of knot A with the proper-
ties knot B, we might in fact be comparing properties which are not inherent
in knottedness itself, but rather in certain representations of knottedness. We
might discover something interesting in the process, but we would not be en-
gaged in knot theory. The only way to approach this di�culty is to use the very
useful idea of an invariant. So, for example, in knot theory we are interested in
all properties that remain invariant ambient isotopy, just as in Euclidean geom-
etry we are interested in all properties which remain invariant under Euclidean
transformation, etc...

The �rst and rather weak invariant is the notion of n-colorability. At the
opposite end of the scale lies an extremely strong invariant, the fundamental
group of the complement of a knot, which we shall from now on refer to as
simply the knot group. Since the fundamental group is such a strong invariant,
it is natural to ask how it relates to the weakest of invariants, n-colorability. In
this section we show that n-coloration is directly related to a simple property of
the knot group by showing that a knot is n-colorable if and only if a certain map
de�nes a homomorphism from the knot group to the dihedral group of order
2n. In order to show this equivalence, we �rst give a brief explanation of the
dihedral and knot groups.

First, the dihedral group. Consider a regular n-sided polygon in the Eu-
clidian plane. This �gure has two obvious types of symmetry: reections and
rotations. These n reections and n rotations form a group of order 2n denoted
by D n . Proving these transformations form a group is a simple exercise after
realizing the following: Euclidean transformations are functions and therefore
associative under composition, a rotation of angle 0 acts as an identity, each
reection is it's own inverse and each rotation has an inverse rotation. This
group has the following properties: all reections are of order 2, there exists
a minimal rotation of order n which generates all other rotations, and reec-
tions conjugate rotations to their inverses. With this information, we have the
following presentation of D n .

< x; y j xn = 1; y2 = 1; y�1xy = x�1 >

Various dihedral groups have as subgroups smaller dihedral groups (Ex: Choos-
ing every-other vertex of an octagon yields a square: D 4 < D 8 . )

To visualize the knot group, we begin with an explanation of the fundamental
group of a space[3]. Given a topological space X consider continuous paths in
X starting and ending at a certain base point' x0 2 X . Notice that we can
equate paths that are virtually the same in the following respect: each can be
continuously 'stretched' into the other without leaving the space. We can also
compose paths end to end, invert any path, etc... After checking that there is
an 'identity' path and that path composition is associative, we obtain a group
whose elements are the equivalence classes of paths in the space X under what
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topologists call homotopy. This group is denoted by �0(X; x0), or simply �0(X)
if appropriate, and is called the fundamental group of a space X with basepoint
x0.

Such groups are important in the study of topological spaces. However, the
fundamental group �0(K) of a knot itself is rather uninteresting, as the essence
of knottedness lies not in the 1-dimensional properties of the knot, but in the
way this 1-dimensional closed curve is embedded in 3-dimensions. Therefore
we consider instead the fundamental group of the ambient space minus the
image of the knot, or �0(S

3 �K). Around 1923 a mathematician by the name
of Wilhelm Wirtinger discovered a method of calculating the knot group of
a knot from it's (oriented) diagram. The method is as follows[2]. Given an
oriented knot diagram D with strands s1; s2; : : : ; sm 2 Q let T be the set of
triples (a; b; c) 2 Q3, each corresponding to a particular crossing, where a is the
overstrand, b is the incoming understrand, and c is the outgoing understrand.
�0(S

3 �K) is now given by the presentation:

< s1; s2; : : : ; sm 2 Q j a�1ba = c for all (a; b; c) 2 T � Q3 >

Verbally, this could be stated as follows: the overstrand conjugates the in-
coming understrand to the outgoing understrand, with each strand associated to
the path that leaves the base point, loops around the (oriented) strand according
to the right hand rule, and returns to the base point. It is a rather interesting
visual exercise to show that the 'Wirtinger Relation,' namely a�1ba = c, holds.

We now attempt to de�ne a homomorphism from �0(S
3 � K) to D n by

de�ning it's action on the generators of �0(S
3�K). Using the conjugacy relation

in the dihedral presentation as a hint, we try � : si ! yxk(i) where k : Q ! Z.
This leads to the following:

Theorem 4 Let D be an oriented knot diagram, and let K be the knot it repre-
sents. D is n-colorable if and only if there exists a homomorphism � from the
knot group �0(S

3 �K) to D n where � sends each si to yxk(i)

Proof 5 To check the validity of the homomorphism, we determine under which
conditions the image of �0(S

3 �K) under � satis�es the Wirtinger relation for
all (a; b; c) 2 T , which leads us to the following equivalent equations:

�(a�1ba) = �(c)

(yxk(a))�1(yxk(b))(yxk(a)) = yxk(c)

(x�k(a)y�1)(yxk(b))(yxk(a)) = yxk(c)

(xk(b)�k(a))(yxk(a)) = yxk(c)

(xk(b)�k(a))(yxk(a)y) = (yxk(c)y)

(xk(b)�2k(a)) = x�k(c)

2k(a)� k(b)� k(c) = 0 mod n
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Notice the last equation is, with our notation, the condition for the n-colorability
of a knot, with the coloration function v(q) = k(q) mod n. �

We have now shown that the concept of n-colorability is encapsulated in
the fundamental group of a knot. Couldn't analogous results hold for other
knot-theoretic concepts? For instance, suppose for some strange reason history
took a di�erent course and we had the concepts of the knot polynomial and the
knot group but not the concept of n-colorability. Then, while studying the knot
group, we ask "With which knots, if any, does there exist a homomorphism to a
dihedral group?" After a little experimentation, we obtain the homomorphism
de�ned by �, and derive the concept of colorability from group theoretic prop-
erties of the knot group. Likewise, we can now ask ourselves, given a class of
groups G, "With which knots, if any, does there exist a homomorphism from
the knot group to a group in G?" By determining such conditions, we can per-
haps derive new knots-theoretic concepts from group theoretic properties. The
�rst natural question to ask is: Which concepts correspond to the existence of
homomorphisms from the knot group to the class of symmetric groups?

7 Summary of work

This paper has discussed the idea of a \coloration" of a knot which shows that
a knot is di�erent from the unknot. We have shown that an example of this is
\tri-colorability" which extends naturally to \n-colorability."

We have shown the existence of n-colorations of knots through computation
by inspection. Also we have used the crossing matrix to compute the number
of colors needed to compute the coloration of a given knot. This results in a
matrix with a nullity of two modulo some integer which is the number of colors.

There are prime knots and composite knots. Like the integers, a knot is
either composite or prime. And like the integers a composite knot is the unique
composition of primes.

We have observed that some crossing matrices has a nullity greater than
two. Many of these knots are pretzel knots.

Unfortunately n-colorability of knots is not a universal detector of the un-
knot. There are some knots which have a Jones polynomial which is di�er-
ent from the unknot, which are not colorable. Hence in these situations n-
colorability fails as a test for the unknot.

We have explored representations of the fundamental group into the dihedral
group.

Finally we have computed the crossing matrices for all of the knots appearing
in our text. These were included in the preceding section \Tables of matrices."
This demonstrates the wide range of usability of this technique.
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8 Conclusions

This paper represents a sample of the work done in eight short weeks under-
standing the theory of knots. Additional time was spent in an overview of groups
and hyperbolic geometry and the application of each to the theory of knots. All
were given opportunity to teach and share the things that they had learned.
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A Tables of Matrices

The following crossing matrices are in 1-1 correspondence with the table of knots
in the appendix of ??. Somebody please tell me how to get the two-column stu�
to end up on this page too!
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3-1 0
@

1 �2 1

1 1 �2

�2 1 1

1
A

4-1 0
BB@

1 0 �2 1

1 1 0 �2

�2 1 1 0

0 �2 1 1

1
CCA

5-1 0
BBBB@

1 0 �2 0 1

1 1 0 �2 0

0 1 1 0 �2

�2 0 1 1 0

0 �2 0 1 1

1
CCCCA

5-2 0
BBBB@

1 0 �2 0 1

1 1 0 �2 0

�2 1 1 0 0

0 0 1 1 �2

0 �2 0 1 1

1
CCCCA

6-1

0
BBBBB@

1 0 �2 0 0 1

1 1 0 0 �2 0

�2 1 1 0 0 0

0 0 1 1 0 �2

0 �2 0 1 1 0

0 0 0 �2 1 1

1
CCCCCA

6-2

0
BBBBB@

1 0 �2 0 0 1

1 1 0 �2 0 0

0 1 1 0 0 �2

0 0 1 1 �2 0

�2 0 0 1 1 0

0 �2 0 0 1 1

1
CCCCCA

6-3

0
BBBBB@

1 0 0 �2 0 1

1 1 �2 0 0 0

0 1 1 0 0 �2

0 0 1 1 �2 0

�2 0 0 1 1 0

0 �2 0 0 1 1

1
CCCCCA

7-1

0
BBBBBBB@

1 0 0 �2 0 0 1

1 1 0 0 �2 0 0

0 1 1 0 0 �2 0

0 0 1 1 0 0 �2

�2 0 0 1 1 0 0

0 �2 0 0 1 1 0

0 0 �2 0 0 1 1

1
CCCCCCCA

7-2

0
BBBBBBB@

1 0 �2 0 0 0 1

1 1 0 0 �2 0 0

�2 1 1 0 0 0 0

0 0 1 1 0 0 �2

0 0 0 1 1 �2 0

0 �2 0 0 1 1 0

0 0 0 �2 0 1 1

1
CCCCCCCA

7-3

0
BBBBBBB@

1 0 0 �2 0 0 1

1 1 0 0 0 �2 0

0 1 1 0 �2 0 0

0 0 1 1 0 0 �2

�2 0 0 1 1 0 0

0 �2 0 0 1 1 0

0 0 �2 0 0 1 1

1
CCCCCCCA

7-4

0
BBBBBBB@

1 0 0 �2 0 0 1

1 1 0 0 �2 0 0

0 1 1 0 0 �2 0

�2 0 1 1 0 0 0

0 0 0 1 1 0 �2

0 0 �2 0 1 1 0

0 �2 0 0 0 1 1

1
CCCCCCCA

7-5

0
BBBBBBB@

1 0 �2 0 0 0 1

1 1 0 0 �2 0 0

0 1 1 0 0 0 �2

0 0 1 1 0 �2 0

�2 0 0 1 1 0 0

0 0 0 �2 1 1 0

0 �2 0 0 0 1 1

1
CCCCCCCA

7-6

0
BBBBBBB@

1 �2 0 0 0 0 1

1 1 0 0 �2 0 0

0 1 1 0 0 0 �2

0 0 1 1 0 �2 0

0 0 �2 1 1 0 0

�2 0 0 0 1 1 0

0 0 0 �2 0 1 1

1
CCCCCCCA

7-7

0
BBBBBBB@

1 0 0 �2 0 0 1

1 1 �2 0 0 0 0

0 1 1 0 0 �2 0

0 0 1 1 �2 0 0

0 0 0 1 1 0 �2

�2 0 0 0 1 1 0

0 �2 0 0 0 1 1

1
CCCCCCCA

8-1

0
BBBBBBBBB@

1 0 �2 0 0 0 0 1

1 1 0 0 0 �2 0 0

�2 1 1 0 0 0 0 0

0 0 1 1 0 0 0 �2

0 0 0 1 1 0 �2 0

0 �2 0 0 1 1 0 0

0 0 0 0 �2 1 1 0

0 0 0 �2 0 0 1 1

1
CCCCCCCCCA

8-2

0
BBBBBBBBB@

1 0 0 �2 0 0 0 1

1 1 0 0 �2 0 0 0

0 1 1 0 0 0 �2 0

0 0 1 1 0 0 0 �2

0 0 0 1 1 �2 0 0

�2 0 0 0 1 1 0 0

0 �2 0 0 0 1 1 0

0 0 �2 0 0 0 1 1

1
CCCCCCCCCA

8-3

0
BBBBBBBBB@

1 0 0 �2 0 0 0 1

1 1 0 0 0 0 �2 0

0 1 1 0 0 �2 0 0

�2 0 1 1 0 0 0 0

0 0 0 1 1 0 0 �2

0 0 �2 0 1 1 0 0

0 �2 0 0 0 1 1 0

0 0 0 0 �2 0 1 1

1
CCCCCCCCCA

8-4

0
BBBBBBBBB@

1 0 0 0 �2 0 0 1

1 1 0 �2 0 0 0 0

0 1 1 0 0 0 �2 0

0 0 1 1 0 �2 0 0

0 0 0 1 1 0 0 �2

�2 0 0 0 1 1 0 0

0 0 �2 0 0 1 1 0

0 �2 0 0 0 0 1 1

1
CCCCCCCCCA

26



8-5

0
BBBBBBBBB@

1 0 �2 0 0 0 0 1

1 1 0 0 0 �2 0 0

0 1 1 0 0 0 0 �2

�2 0 1 1 0 0 0 0

0 0 0 1 1 0 �2 0

0 �2 0 0 1 1 0 0

0 0 0 �2 0 1 1 0

0 0 0 0 �2 0 1 1

1
CCCCCCCCCA

8-6

0
BBBBBBBBB@

1 0 �2 0 0 0 0 1

1 1 0 0 �2 0 0 0

0 1 1 0 0 0 0 �2

0 0 1 1 0 0 �2 0

0 0 0 1 1 �2 0 0

�2 0 0 0 1 1 0 0

0 0 0 �2 0 1 1 0

0 �2 0 0 0 0 1 1

1
CCCCCCCCCA

8-7

0
BBBBBBBBB@

1 0 0 0 0 �2 0 1

1 1 0 0 �2 0 0 0

�2 1 1 0 0 0 0 0

0 0 1 1 0 0 �2 0

0 0 0 1 1 0 0 �2

0 �2 0 0 1 1 0 0

0 0 �2 0 0 1 1 0

0 0 0 �2 0 0 1 1

1
CCCCCCCCCA

8-8

0
BBBBBBBBB@

1 0 0 0 0 0 �2 1

1 1 0 0 0 �2 0 0

0 1 1 0 �2 0 0 0

0 0 1 1 0 0 0 �2

0 �2 0 1 1 0 0 0

0 0 0 �2 1 1 0 0

�2 0 0 0 0 1 1 0

0 0 �2 0 0 0 1 1

1
CCCCCCCCCA

8-9

0
BBBBBBBBB@

1 0 0 �2 0 0 0 1

1 1 0 0 0 0 �2 0

0 1 1 0 0 �2 0 0

0 0 1 1 0 0 0 �2

�2 0 0 1 1 0 0 0

0 �2 0 0 1 1 0 0

0 0 �2 0 0 1 1 0

0 0 0 0 �2 0 1 1

1
CCCCCCCCCA

8-10

0
BBBBBBBBB@

1 0 �2 0 0 0 0 1

1 1 0 0 �2 0 0 0

0 1 1 0 0 0 0 �2

�2 0 1 1 0 0 0 0
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