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Abstract
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1 Serre’s Conjecture

All local rings are assumed to be Noetherian, M,N are finitely generated
R-modules. If proj dim(M) finite or proj dim(N) finite and we have ℓ(M ⊗R
N) <∞, then we may define

χ(M,N) :=
d∑

i=0

(−1)iℓ(TorRi (M,N)),

where d is proj dim(M) or proj dim(N) respectively.

1.1 Regular Rings

Conjecture 1 (Nonnegativity) If R is a regular local ring, then χ(M,N) > 0.

This is was proved by Gabber.

Theorem 2 (Serre) If R is a regular local ring and ℓ(M ⊗R N) < ∞, then
dim(M) + dim(N) 6 dim(R)

Conjecture 3 (Peskine-Szpiro) If R is any local ring, M an R-module with
proj dim(M) <∞, and ℓ(M ⊗R N) <∞, then dim(M) + dim(N) 6 dim(R).

This is wide open except for hypersurface case.

Conjecture 4 (Vanishing) If R is a regular local ring and

dim(M) + dim(N) < dim(R),

then χ(M,N) = 0.
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This was proved independently by Roberts and Gillet-Saulé.

Conjecture 5 (Positivity) If R is a regular local ring and

dim(M) + dim(N) = dim(R),

then χ(M,N) > 0.

This conjecture is still open.

1.2 The General Case

Theorem 6 (Serre) If R is a regular local ring, then

max{j : TorRj (M,N) 6= 0} = dim(R) − depth(M) − depth(N).

Lemma 1 (Hochster) Let R be Cohen-Macaulay and M and R-module with
proj dim(M) < ∞. Vanishing holds if and only if it holds for every pair of
Cohen-Macaulay R-modules M,N such that,

dim(M) + dim(N) = dim(R) − 1.

Sketch of Proof Write dim(M) + dim(N) < dim(R). So

dim(R) − ht(Ann(M)) + dim(R) − ht(Ann(N)) < dim(R),

and so
ht(Ann(M)) + ht(Ann(N)) > dim(R)

or
ht(Ann(N)) > dim(M).

If r = dim(M) and s = dim(N), we may choose x1, . . . , xr+1 ∈ Ann(N) such
that ℓ(M/xM) <∞ and any r elements of x1, . . . , xr+1 is a system of parame-
ters for M with x being R-regular.

Now we can construct T , a Cohen-Macaulay module, by taking a resolution
of N over R/xR

0 → T → · · · → (R/xR)t1 → (R/xR)t0 → N → 0.

such that χ(M,T ) = χ(M,N). Note that dim(R/xR) = n − r − 1 where n =
dim(R). So dim(T ) = n−r−1, but χ(M,R/xR) = 0 as #(x) = r+1 > dim(M).
Hence, χ(M,T ) = 0 if and only if χ(M,N) = 0. In a similar manner we can
show M is a Cohen-Macaulay module. �
Proposition 7 Let R be Gorenstein, M,N are Cohen-Macaulay, where M
has finite projective dimension and ℓ(M ⊗R N) < ∞, i = dim(R) − dim(M) −
dim(N), r = dim(M), s = dim(N), M̌ = Extn−rR (M,R), and Ň = Extn−sR (N,R).
Now

χ(M,N) = (−1)iχ(M̌, Ň).
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Sketch of Proof The crucial step is a simple spectral sequence argument.
First note

ℓ(TorRj (M,N)) = ℓ(TorRj (M,N )̌ ).

Now write

TorRj (M,N) = ExtnR(TorRj (M,N), R),

= Ext
n+j−(n−s)
R (M,Extn−sR (N,R)),

= Ext
n−r+(i−j)
R (M,Extn−sR (N,R)),

= TorRi−j(M̌, Ň). �
Corollary 7.1 If dim(M)+dim(N) = dim(R)−1, then χ(M,N) = −χ(M̌, Ň).

Corollary 7.2 If M ≃ M̌ , N ≃ Ň , and dim(R) − dim(M) − dim(N) is odd,
then χ(M,N) = 0.

Corollary 7.3 If R, R/p, and R/q are all Gorenstein, where p, q ∈ Spec(R),
and dim(R) − dim(R/p)− dim(R/q) is odd, then χ(R/p, R/q) = 0.

Corollary 7.4 If i = 0, then ℓ(M ⊗R N) = ℓ(M̌ ⊗R Ň).

Theorem 8 If R is Gorenstein, then vanishing holds if and only if for every
pair of Cohen-Macaulay modules M , N where proj dim(M) <∞ and dim(M)+
dim(N) = dim(R), we have ℓ(M ⊗R N) = ℓ(M ⊗R Ň).

Sketch of Proof (⇒) Given M and N as above, we have by a result due to
Serre that TorRi (M,N) = 0 for i > 0. So,

χ(M,N) = ℓ(M ⊗R N).

Hence we have χ(M, Ň) = ℓ(M ⊗R Ň). Now taking a prime filtration on N and
using the additivity of χ we have

χ(M,N) =
∑

dim(R/p)=dim(N)

ℓ(Np)χ(M,R/p) +
∑

dim(Qi)<dim(N)

χ(M,Qi)

Similarly we have

χ(M, Ň) =
∑

dim(R/p)=dim(N)

ℓ(Ňp)χ(M,R/p) +
∑

dim(Qi)<dim(N)

χ(M,Qi)

But by vanishing we have
∑
χ(M,Qi) = 0. Since R is Gorenstein, we have

ℓ(Np) = ℓ(Ňp). Thus χ(M,N) = χ(M, Ň).
Warning: One cannot use the same idea of additivity to prove an analogous

statement when both M and N have finite projective dimension as R/p may no
longer have finite projective dimension.
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(⇐) Recall if M and N are Cohen-Macaulay, then dim(M) + dim(N) =
dim(R) − 1. Write

0 → T →

(
R

(x1, . . . , xr)

)t
→ N → 0

where the x′is ∈ Ann(N) as earlier. So

χ(M,N) = tℓ(M/xM) − ℓ(M ⊗R T ),

which leads us to:

0 →

(
R

(x1, . . . , xr)

)t
→ Ť → Ň → 0

This shows that
χ(M, Ň) = ℓ(M ⊗R Ť ) − tℓ(M/xM),

So
χ(M,N) = −χ(M, Ň).

Applying the above technique once more we see χ(M̌, Ň). From a previous
proposition we see that χ(M,N) = −χ(M̌, Ň). Hence, χ(M,N) = 0. Note that
the argument for this part of the proof would work if the projective dimension
of both M and N are finite. �
Remark When dim(M) + dim(N) = dim(R) (as in the above theorem) we
say we have a “proper intersection.”

Sketch of Proof This is implied by the fact that for every pair of Cohen-
Macaulay modules T and Q with finite projective dimension such that ℓ(T ⊗R
Q) <∞ and dim(T )+ dim(Q) = dim(R), we have ℓ(T ⊗RQ) = ℓ(T ⊗R Q̌). �
Remark If R is regular and is a complete intersection ring, then ℓ(T ⊗RQ) =
ℓ(T ⊗R Q̌) can be shown by local Chern characters.

Theorem 9 If R is Gorenstein and dim(R) 6 5, then vanishing holds for
R-modules M,N when both M and N have finite projective dimension.

Open Problem 10 If R is Gorenstein and dim(R) > 5, does vanishing holds
for pairs of R-modules M,N when both M and N have finite projective dimen-
sion?

Theorem 11 If R is Gorenstein, then positivity (or nonnegativity) implies
vanishing.

Proof We can assume M to be Cohen-Macaulay with the projective dimen-
sion of M finite. We know that if dim(M) < dim(R) and ℓ(N) < ∞, then
χ(M,N) = 0.

Suppose that R/p has the least dimension such that we do not know about
vanishing. Then
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1. We have

χ(M,R/pt) = ℓ(Rp)/ptRp)χ(M,R/p) +
∑

dim(Qi)<dim(R/p)χ(M,Qi).

However, the last term in this sum goes to zero by our choice of R/p.
2. If dim(M) = r chose x1, . . . , xr ∈ p such that ℓ(M/xM) < ∞. Set

R = R/x and M = M/xM , then χR(M,R/p) = χR(M,R/p) as x is also
an M -sequence and an R-sequence.

Thus we can assume that the projective dimension of M is finite, ℓ(M) <∞,
and dim(R/p) = dim(R) − 1. So

χ(M,R/p) = lim
t→∞

χ(M,R/pt)
ℓ(Rp/ptRp)

Now look at
0 → pt → R → R/pt → 0

So, χ(M,R/pt) = ℓ(M) − χ(M, pt). Now we have

χ(M,R/p) = − lim
t→∞

χ(M, pt)
ℓ(Rp/ptRp)

as the ℓ(M)/ℓ(Rp/ptRp) term goes to zero in the limit, note dim(pt) = dim(R).
If positivity or nonnegativity holds, then χ(M, pt) > 0 and thus χ(M,R/p) 6 0.

So take y1, . . . , yn a maximal R-sequence. Since ℓ(M) <∞ we may assume
that yi ∈ Ann(M). Write

0 → N → (R/y)t →M → 0

Then χ((R/y)t, R/p) = χ(M,R/p) + χ(N,R/p). But the left-hand side is zero
by a result due to Serre and so each term of the right-hand side is less than or
equal to zero. Thus both χ(M,R/p) = 0 and χ(N,R/p) = 0. �
2 χi-Conjecture

In this section we will assume thatR is local,M,N areR-modules, the projective
dimension of M is finite, ℓ(M ⊗R N) <∞, and we define

χi(M,N) :=

proj dim(M)−i∑

j=0

(−1)jℓ(TorRi+j(M,N)).

Conjecture 12 (Serre) If R is a regular local ring, then χi(M,N) > 0, or
χi(M,N) = 0 if and only if TorRj (M,N) = 0 for j > i.

Remark in the above conjecture, the conclusion TorRj (M,N) = 0 for j > i
implies rigidity.
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Theorem 13 (Serre-Auslander) The above conjecture is true when R is of
equal characteristic.

Theorem 14 (Lichtenbaum) The above conjecture is true when R is unram-
ified for all χi except possibly i = 1.

Theorem 15 (Hochster) The above conjecture is true when R is unramified
for χ1.

Remark Gabber also claims to have independently proven the above conjec-
ture when R is unramified for χ1.

Open Problem 16 The above conjecture is open if R is ramified. To clarify,
it is still open when

R =
V [[x1, . . . , xn]]

f

where

f = xtn + a1x
t−1 + · · · + an,

ai ∈ (p, x1, . . . , xn−1),

at ∈ (p, x1, . . . , xn−1) − (p, x1, . . . , xn−1)
2.

In this case, S = R⊗̂VR is no longer regular.

Theorem 17 If R is a regular local ring where the χ2-conjecture is valid, then
χ(M,N) > 0 when M is Cohen-Macaulay and dim(M) + dim(N) = dim(R).

Remark The above conjectures make sense when R is not regular and the
projective dimension of M or the projective dimension of N is finite.

2.1 Counterexamples

Example (Dutta-Hochster-Mclaughlin) Let

R =

(
k[X,Y, U, V ]

(XY − UV )

)

(X,Y,U,V )

.

Now there exists an R-module M such that ℓ(M) < ∞, proj dim(M) < ∞,
χ(M,R/p) = −1 6= 0, dim(M) = 0, dim(R/p) = 1 where p = (X,U), and hence
positivity is false, which implies χi is false.

Example (Levine) Let

R =

(
k[X1, . . . , Xn, Y1, . . . , Yn]∑

XiYi

)

(X1,...,Xn,Y1,...,Yn)

.

This was done using non-constructive K-theoretic techniques.

Example (Roberts-Srinivas)
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1. R = k[X,Y, Z,W ]/f , where f has degree three and k is separable and
algebraically closed - the coordinate ring of a cubic surface in P3.

2. R the coordinate ring Pn × Pn.
Theorem 18 (Roberts, Gillet-Soulé) Vanishing holds over complete inter-
section rings when both M and N have finite projective dimension.

Theorem 19 (Dutta) There exist complete intersection rings R along with
R-modulesM andN both with finite projective dimension such that χ(M,N) =
0 but χ2(M,N) < 0. In fact, one can produce examples where all the χi’s are
negative for i > 2!

In light of the above theorem, we are not sure whether we should believe the
positivity conjecture when both M and N have finite projective dimension over
complete intersection rings.

To prove the above theorem, we need the following special case of a theorem
by Auslander and Bridger.

Theorem 20 (Auslander-Bridger) Let R be Gorenstein and N any finitely
generated R-module, then there exists an exact sequence

0 → T → N ⊕Rt → Q→ 0

where proj dim(Q) <∞ and T is a maximal Cohen-Macaulay module.

Theorem 21 (Auslander-Buchweitz) Let R be Gorenstein andN any finitely
generated R-module, then there exists an exact sequence

0 → N → Q→ T → 0

where proj dim(Q) <∞ and T is a maximal Cohen-Macaulay module.

Definition Given a pair M , N such that proj dim(M) <∞, ℓ(M⊗RN) <∞,
and dim(M)+ dim(N) = dim(R), we say a finitely generated R-module N ′ is a
companion module of N with respect to M if the following hold:

1. dim(N ′) = dim(N).

2. depth(N ′) = dim(N ′) − 1.

3. ℓ(M ⊗R N
′) <∞ and χ(M,N ′) = χ(M,N).

Proposition 22 With the above setup, if R is Gorenstein, N has a companion
module.

Proof If dim(M) = r we can find x1, . . . , xn ∈ Ann(N) a system of param-
eters that is an R-sequence. Set R = R/xR, so M is an R-module. Applying
Auslander-Bridger over R,

0 → T → N ⊕R
t
→ Q→ 0,
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where Q and T are R-modules and proj dim(Q) < ∞ and T is a maximal
Cohen-Macaulay module. Now we have two cases. Case a: dim(Q) = dim(R);
and case b: dim(Q) < dim(R). We want to reduce case a to case b. By the
lectures of Paul Roberts in this mini-course, we have that dim(Q) = dim(R)
and proj dim(Q) < ∞ implies that Supp(Q) = Supp(R). If S is the set of non-
zero-divisors of R, then S−1Q is S−1R-free of rank s. Therefore we have the
exact sequence

0 → R
s
→ Q→ Q′ → 0,

where dim(Q′) < dim(R) and the proj dim(Q′) < ∞. So we have a diagram
that looks like:

0

R
s

0 T N ⊕R
t Q 0

Q′

0

From this we obtain the exact sequence:

0 → T ⊕R
s
→ N ⊕R

t
→ Q′ → 0

So dim(Q′) < dim(R).
Now we may assume case b. Write

0 → T → N ⊕R
t
→ Q→ 0

with dim(Q) < dim(R). So we have

χR(M,N) + tχR(M,R) = χR(M,Y ) + χR(M,Q)

but
χR(M,Q) =

∑
(−1)iχ(TorRi (M,R/x), Q).

Since TorRi (M,R/x) has finite length, we are left with

χ(M,N) = χ(M,T ) − tχ(M,R).

Since dim(Q) < dim(R),

0 → R
t
→ T → N ′ → 0

is an exact sequence. So

χ(M,N ′) = χ(M,T ) − tχ(M,R) = χ(M,N).

So depth(N ′) = dim(N ′) − 1 by depth counting, dim(N ′) = dim(N). �
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2.1.1 Discussion of Proof

Step 1 R is Gorenstein, so suppose vanishing does not hold. So we can find
M Cohen-Macaulay with finite projective dimension, p a prime ideal such that
χ(M,R/p) > 0, dim(M) + dim(R/p) < dim(R), and χ(M,R/q) = 0 if q ⊃ p.
Step 2 From the previous section, we may assume that ℓ(M) <∞ and so we
have

χ(M,R/p) =
χ(M,R/pt)
ℓ(Rp/ptRp) =

−χ(M, pt)
ℓ(Rp/ptRp) .

So χ(M,R/p) > 0 which implies χ(M, pt) < 0, note that dim(pt) = dim(R).

Step 3 By an easy spectral sequence argument (which reduces to a long exact
sequence) we find

χ(M,N) > ℓ(TorR1 (M̌,Ext1R(N,R)) − ℓ(M̌ ⊗R Ext1R(N,R))

dim(Ext1R(N,R)) < dim(R) since R is Gorenstein. Suppose that

χ(M̌,Ext1R(N,R)) = 0.

Then 0 > χ(M,N) > χ2(M̌,Ext1R(N,R)). Letting x ∈ Ann(Ext1R(N,R)) a
non-zero-divisor on R, apply Auslander-Buchweitz to Ext1

R
(N,R). Write

0 → Ext1
R
(N,R) → Q′ → T → 0,

with the projective dimension of Q′ finite and T a maximal Cohen-Macaulay
module over R. We have

χ(M̌, T ) = ℓ(TorR0 (M̌, T )) − ℓ(TorR1 (M̌, T )).

So χ2(M̌,Ext1(N,R)) = χ2(M̌,Q′) < 0, but χ(M̌,Q′) = 0.
The condition χ(M̌,Ext1R(N,R)) = 0 happens:

1. For all counterexamples to vanishing listed above,

2. When R is Gorenstein of dimension 3.

3 Some on Positivity

In this section we will assume that R is local and Noetherian, dim(R) = d,
char(R) = p where p is a prime, and that R/m is perfect (Cohen-Macaulay with
finite projective dimension) for convenience. M and N will be R-modules with
ℓ(M ⊗R N) < ∞ and dim(M) + dim(N) = dim(R). Finally, f will denote the
Frobenius endomorphism, specifically:

f : R → R fn : R → R

r 7→ rp r 7→ rp
n
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The notation fn

R represents the R-algebra structure defined by

r · x := rp
n

x and x · r := xr,

where x ∈ fn

R. The notation fn

N represents the left R-module structure defined
by

r · x := rp
n

x

where x ∈ fn

N . We define the Frobenius functor F via

Fn(−) := −⊗R
fn

R,

where the R-module structure is the normal one on the right.

Theorem 23 (Peskine-Szpiro) If proj dim(M) <∞, then proj dim(Fn(M)) <
∞. Also Supp(Fn(M)) = Supp(M), so ℓ(M ⊗R N) = ℓ(Fn(M) ⊗R N) <∞.

3.1 Some Facts

Supposing proj dim(M) <∞ and we have MR
fn

→ RN , we have

TorRi (M, f
n

N) = TorRi (Fn(M), N).

This is because given a resolution F• of M ,

F• ⊗R
fn

N ≃ F• ⊗R
fn

R⊗R N ≃ Fn(F•) ⊗R N.

Now supposing R is a complete local domain, where k = R/m, we have the
following diagram:

R
fn

R

k[[X1, . . . , Xd]]

module finite

fn

k[[X1, . . . , Xd]]

Note that because k is perfect, the image of the bottom map is k[[Xpn

1 , . . . , Xpn

d ]].
So the torsion-free rank of f

n

R is pdn.
Now we have a question: When proj dim(M) < ∞, how are χ(Fn(M), N)

and χ(M,N) related?
When attacking this question we may assume that N = R/p = R as χ is

additive. So we have

0 →

p⊕

i=1

R→ fR → Q→ 0

where dim(Q) < dim(R). So

0 →

pr⊕

i=1

fn−1

R→ fn

R → fn−1

Q→ 0,
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and so
χ(M, f

n

R) = prχ(M, f
n−1

R)︸ ︷︷ ︸
repeat for this term, etc.

+χ(M, f
n−1

Q).

We obtain:

χ(Fn(M), R) = pnrχ(M,R) + cnχ(M,R/pi) + · · · .

By recalling: χ(Fn(M), N) = χ(M, f
n

N).

Definition Define:

χ∞ := lim
n→∞

χ(Fn(M), N)

pn·codim(M)

and

α∞ := lim
n→∞

χ(Fn(M), N)

pn·dim(M)

Note that since dim(M) + dim(N) 6 dim(R), we have dim(M) 6 codim(N)
and that we have equality in the positivity case.

Theorem 24 We have that

α∞(M,R/p) = χ(M,R/p) +
∑

dim(R/pi)<dim(R/p) ciχ(M,R/pi)
where each ci ∈ Q.

So when dim(M) + dim(N) < dim(R), χ∞(M,N) = 0 and when dim(M) +
dim(N) = dim(R), χ∞(M,N) = α∞(M,N).

Theorem 25 If R is local, proj dim(M) < ∞, M is Cohen-Macaulay, and
dim(M) + dim(N) = dim(R), then χ∞(M,N) > 0.

Remark If M is not assumed to be Cohen-Macaulay, then the theorem is still
open!

Proof of the above statement can be made much simpler by the fact:

lim
n→∞

ℓ(TorRi (Fn(M), N)

pn·codim(M)
=

{
0 for i > 0.

6= 0 for i = 0.

The first proof of this fact needed R to be Gorenstein. Now we know it for all
R. Also note that this is really a special case of the New Intersection Theorem.

Theorem 26 (Seibert)

1. If F• is a finite complex of finitely generated free R-modules, N a finitely
generated R-module of dimension r such that for each i > 0,

ℓ(Hi(F• ⊗R N)) <∞,

define
χ(F•, N) =

∑
(−1)iℓ(Hi(F• ⊗R N)).

Then χ(Fn(F•), N) = crp
nr + cr−1p

n(r−1) + · · · + c0, where ci ∈ Q.
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2. Given an exact sequence

0 → N ′ → N → N ′′ → 0,

we have for some constant K

ℓ(Hi(F• ⊗R N)) − ℓ(Hi(F• ⊗R N
′)) − ℓ(Hi(F• ⊗R N

′′)) 6 Kpn(r−1).

Applications

Theorem 27 If R is a regular local ring, p a non-zero-divisor on M , where M
is a Cohen-Macaulay module, and ptN = 0 for some t > 0, then χ(M,N) > 0.

Proof Write
N ⊃ pN ⊃ · · · ⊃ pt−1N ⊃ 0

χ(M,N) =
∑
χ(M,piN/pi+1N). So we can assume that pN = 0. Since p is a

non-zero-divisor on R and on M we have

χR(M,N) = χR/pR(M/pM,N)

but M = M/pM is Cohen-Macaulay. So by vanishing,

χR
∞

(M,N)︸ ︷︷ ︸
>0

=︸︷︷︸
by vanishing

χR(M,N) = χR(M,N)

So we see that χR(M,N) > 0. �
Remark This theorem was extended by Kurano and Roberts.

Theorem 28 (Foxby) IfR is local andM is anR-module with finite projective
dimension and the dimension of N is one, then χ(M,N) > 0.

Theorem 29 (Tennison) If R is regular, M and N are R-modules, and sup-
pose that

ℓ(Gm(M) ⊗Gm(N)) <∞.

Then χ(M,N) = em(M)em(N).

More generally, if M = R/p, N = R/q, Y = Spec(M), Z = Spec(N), and

Ỹ , Z̃ are the blow-ups of Y and Z, then

ℓ(Gm(M) ⊗Gm(N)) <∞ ⇔ Ỹ ∩ Z̃ = ?.
Theorem 30 (Dutta) If Ỹ ∩ Z̃ is a finite set of points, then χ(M,N) >
em(M)em(N).

The proof of this last theorem uses nonnegativity results by Gabber and
Intersection Theory as introduced in Fulton’s book.
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3.2 Chow Groups

Let A i (R) denote the ith Chow Group of R.

Theorem 31 (Claborn-Fossum)

1. For a field k, if R = k[X1, . . . , Xn], then A i (R) = 0 for i < n and A n ≃ Z.

For a DVR V , if R = V [X1, . . . , Xn], then A i (R) = 0 for i < n+ 1.

2. For a field k, if R = k[[X1, . . . , Xn]], then A i(R) = 0 for i < n and A n ≃ Z.

For a DVR V , if R = V [[X1, . . . , Xn]], then A i (R) = 0 for i < n+ 1.

Conjecture 32 (Gersten) If R is any regular local ring, of dimension n, thenA i(R) = 0 for i < n.

Theorem 33 (Quillen) If R is a regular local ring smooth over k, thenA i(R) = 0 for i < n,

His proof was geometric, looking at the tangent cone and tangent space.

Theorem 34 (Gillet-Levine) If R is regular local and smooth over an excellent
DVR V , then A i(R) = 0 for i < n.

This proof is an extension of Quillen’s arguments.

Remark Cannot assume R is complete for the Chow group problem.

Question For R → R̂, can we sayA i(R) →֒ A i (R̂)

While this is not true in general, (Hochster gave a counterexample in the non-
normal case) we do have this:

Theorem 35 (Kamoi-Kurano) If R is an excellent regular local ring, thenA i (R) →֒ A i (R̂).

Gersten’s Conjecture is still open when R is ramified regular local. We have
the following result:

Theorem 36 (Dutta) If R is a ramified regular local ring, then A 1 (R).

For

R =
V [[X1, . . . , Xn]]p− ∑

x2
i

,

the result that A i (R) = 0 when i < n was first proved by Levine using
K-theoretic techniques. Dutta gives an algebraic proof which does not work
for when the ring R is not so nice.
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Conjecture 37 (Bass-Quillen) If R is a regular local ring and P a finitely
generated projective module over R[X1, . . . , Xn], then P = P0 ⊗R R[X] where
P0 is a finitely generated projective module over R.

The case where R is a field, conjectured by Serre, was proved independently
by Quillen and Suslin.

Theorem 38 (Lindel) Proved the above conjecture when R is geometrically
regular local ring. That is, when R is a local ring which is smooth over k.

Lindel had a special proposition, which we will call a theorem:

Theorem 39 (Lindel) If A is an affine domain over k of dimension d with
maximal ideal m such that Am is a regular local ring, and A/m is a finite
separable extension of k, then there exists x1, . . . , xt ∈ A such that

1. A = k[x1, . . . , xt] and m = (f(x1), x2, . . . , xt) where f is the monic irre-
ducible polynomial of x1 ∈ A/m(= k(x1)) over k.

2. B = k[x1, . . . , xd], n = B ∩m = (f(x1), x2, . . . , xd) and Bn → Am is étale
(flat with ΩAm/Bn = 0).

Using Zariski’s Main Theorem we obtain an extension of this result:

Theorem 40 If (R,m, k) is a regular local ring which is smooth over k, or an
excellent DVR V , and R/m is separably generated over k or V/mV , then there
exists (B, n, k) another regular local ring contained in R such that

1. B = W [X1, . . . , Xd](f(X1),X2,...,Xd) where W is a field or an excellent DVR
contained in R and f(X1) is a monic irreducible polynomial in W [X1].

2. If we take any a ∈ m2 (a 6= 0), then we can choose (B, n, k) such that
B → R is étale, B ∩ aR = (h) and B/hb ≃ R/aR.

This theorem helps us to give an alternate proof of Serre’s Theorem on
Intersection-Multiplicities without using “complete-Tor.” This also provides an
alternate proof of Quillen’s Theorem on Chow groups. Take a ∈ Ann(M) ∩
Ann(N)∩m2 and apply the above theorem. This pulls back our problem to the
polynomial case. Thus, it brings the Intersection-Multiplicities and the Chow
group problems back to the polynomial case. Hence, only the ramified case is
left.

4 Canonical Element Conjecture

Let (A,m, k) be a local ring of dimension n and x = x1, . . . , xn a system of
parameters for A. If we consider the Koszul complex K(x, A) we can find a
chain-map from the Koszul complex to a minimal free resolution F• of k:

0 A

ϕn

An

ϕn−1

· · · An

ϕ1

A

id=ϕ0

A/x 0

· · · Atn+1 Atn Atn−1 · · · At1 A k 0

14



Conjecture 41 In the situation above, ϕn 6= 0 for any system of parameters
x.

4.1 Supposing ϕn = 0

Suppose ϕn = 0. Applying HomA(−, A), and denoting this with a (−)∗, to the
diagram above, we obtain:

0 A

id

(At1)∗

ϕ∗

1

· · · (Atn−1)∗

ϕ∗

n−1

(Atn)∗

ϕ∗

n
=0

· · ·

0 A An · · · An A 0

Letting G = Coker(A(n

2) → An) and G̃ = Coker((Atn−2)∗ → (Atn−1)∗)

0 Extn−1
A (k,A) G̃

η

Im(G̃ →֒ (Atn)∗)

0

0

0 H1(x, A) G xA 0

So, we have the complexes:

0 A

id

(At1)∗

ϕ∗

1

· · · (Atn−1)∗

ϕ∗

n−1

G̃

η

0

0 A An · · · An G 0

and
H1(x, A)

0 A An · · · An G 0

Though K•(x, A) is not necessarily exact, we still can prove the following:

Proposition 42 There exists a free complex L• of finitely generated free mod-
ules and maps ψ• : L• → K•(x, A)+1 such that

1. L• is minimal and

2. ψ• induces an isomorphism Hi(L•) ≃ Hi(K•(x, A))+1 for i > 0.

Then the mapping cone of ψ• gives a free resolution of xA.

This forces ψn−1 : Arn−1 → A to be onto. Actually, ϕn 6= 0 if and only if
ψn−1 is not onto, which is the case if and only if K•(x, A) embeds into the free
minimal resolution of A/xA. This seems to be Robert’s way of looking at the
Canonical Element Conjecture.
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Consider the diagram

· · · Arn

αn

Arn−1

ψn−1

αn−1

Arn−2

αn−2

ψn−2

· · · Ar0

ψ0

H1(x, A)

0 A An · · · An G 0

and suppose that ψn−1 is onto. Then we can break it up into:

1. Arn−1 = Ae1 ⊕ (
⊕rn−1−1

i=2 Aei).

2. αn(A) ⊂
⊕rn−1

i=2 Aei

Coker(αn) = A⊕S′

n−1 so the cokernel is a free summand. So if the Canonical
Element Conjecture is true, this cannot happen.

From this with some work we get the following theorem:

Theorem 43 If (A,m, k) is local, take a minimal resolution of k and let Si =
Syzi(k). Then A is regular if and only if Si has a free summand for some i > 0.

Applying HomA(−, A) to the diagram above, we obtain

0 A An · · · An A A/x

θ

0

P• : 0 (Ar0)∗ · · · (Arn−2)∗
α∗

n−1

(Arn−1)∗ M 0

where M = Coker(α∗

n−1) and θ(1) = ν, a minimal generator of M . such that
xν = 0. So we have that P• is a complex of finitely generated free A-modules
such that ℓ(Hi(P•)) <∞ for i > 0 andH0(P•) has a minimal generator killed by
x, and hence is killed by a power of m. Thus the Canonical Element Conjecture
is true if and only if the Improved New Intersection Theorem is true. It is
enough to prove the Improved New Intersection Conjecture when M is locally
free on Spec(A) − {m}.

Suppose that depth(A) = dim(A) − 1 and A is the homomorphic image of
a Gorenstein ring R such that dim(R) = dim(A). Then the Canonical Element
Conjecture holds in the following cases:

1. Ext1R(A,R) is decomposable.

2. Ext1R(A,R) is cyclic.

Now if θ : ExtnA(k,Ω) → Hnm(Ω) where Ω = HomR(A,R), the Canonical
Element Conjecture says that θ 6= 0. Write

I• : 0 → Ω → I0 → I1 → · · · → In−1 → E → 0
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where E is the injective hull of A/mA. By the same kind of argument as used
before, but now using injective complexes we get a complex of injective modules
J• with ϕ• : I• → J• such that ϕ• induces an isomorphism on cohomology,

0 Ω I0 I1

ϕ0

· · · In−1

ϕn−2

E

ϕn−1

0

0 J0 · · · Jn−2 Jn−1 Jn 0

thus the mapping cone of ϕ• gives an injective resolution of Ω.
Following the same line of arguments, we can show that θ 6= 0 if and only if

ϕn−1 is not injective. Not injective means that the socle must get killed! See
Shamash’s article.

Using these ideas we get that

1. If x ∈ mAnn(Ext1R(A,R)), then A/xA satisfies the Canonical Element
Conjecture.

2. If Ext1R(A,R) = 0, then A satisfies the Canonical Element Conjecture. In
particular

(a) If Ω is S3, A satisfies the Canonical Element Conjecture.

(b) 0 → Ω → R → R/Ω → 0, R/Ω satisfies the Canonical Element
Conjecture.

(c) If A is an almost complete intersection ring and p is a non-zero-divisor
on A, then A satisfies the Canonical Element Conjecture.

(d) If A is almost a complete intersection ring, with A = R/λR. Take
x1, . . . , xn a system of parameters ofR. Is ℓ(A/x) > ℓ(TorR1 (x, R/λR))?

Remark For Canonical Element Conjecture, we may assume A is almost a
complete intersection ring and that p is a parameter on A.

4.2 The Intersection Theorem in Characteristic p

Let us consider the Intersection Theorem in characteristic p which is due inde-
pendently to both Roberts and Peskine-Szpiro.

The statement is as follows: Consider a complex of finitely generated free
modules of length s

F• : 0 → Fs → · · · → F1 → F0 → 0

where ℓ(Hi(F•)) <∞ and not all are zero for every i, then s > d = dim(A).

Theorem 44 Let A be local with dimension d and of non-zero characteristic
p. And consider the complex of free A-modules F• with ℓ(Hi(F•)) < ∞ for
i > 0 and H0m(H0(F•)) 6= 0. Assume M = H0(F•) is locally free on Spec(A)−m
and take any finitely generated A-module N . Define

χ(F•, N) := ℓ(H0m(M ⊗A N)) +
∑

i>0

(−1)i(Hi(F• ⊗A N)).
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Similarly define

χ∞(F•, N) := lim
n→∞

χ(Fn(F•), N)

pna
.

Then we have the following:

1. If dim(N) < d, then χ∞(F•, N) = 0.

2. (a) If dim(N) = d and s < d, then χ∞(F•, N) = 0.

(b) If dim(N) = d and s = d, then χ∞(F•, N) > 0.

Corollary 44.1 The Improved New Intersection Theorem is true is character-
istic p.

Proof M has a minimal generator which is killed by mt. So,

M → A/I

where the minimal generator maps onto 1 in A/I. Hence we get an onto map
Fn(M) → A/I [pn]. This implies that

lim
n→∞

ℓ(A/I [pn])

pnd
> 0.

But higher homologies go to zero in the limit, hence by the previous theorem,
s > d. �
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