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Koszul Cohomology, Cohen Structure Theorems, and Intersection
Multiplicities

Goal: Give enough information on each topic to state the following results:

1. The realization of the Hilbert-Samuel multiplicity as an alternating sum of lengths of
Koszul homology modules;

2. Cohen’s structure theorems for complete local rings;

3. Serre’s results on intersection multiplicities for equicharacteristic and unramified reg-
ular local rings.

Proofs will be sketches due to time restrictions.

General references for the material presented here are:

Koszul homology and cohomology. Bruns-Herzog [2, Section 1.6] and Matsumura [10,
Section 16];

Cohen structure theorems. Matsumura [10, Sections 28,29];

Intersection multiplicities. Serre [14].
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Chapter 1

Koszul cohomology

1.1 Motivating Basics

A chain complex is a sequence of R-module homomorphisms

M• = · · ·
∂i+1
−−−→Mi

∂M

i−−→Mi−1

∂M

i−1
−−−→ · · ·

such that ∂M
i ∂M

i+1 = 0 for each integer i, that is, Im ∂M
i+1 ⊆ Ker ∂M

i . The ith homology
module of M• is Hi(M•) = Ker ∂M

i / Im ∂M
i+1. This measures how close M• is to being exact

at the degree-i spot. If Mi = 0 for each i < 0, i.e., M• is of the form

M• = · · ·
∂2−→M1

∂M
1−−→M0 → 0 → · · ·

then M• is acyclic if Hi(L) = 0 for each i 6= 0. In other words, M• is acyclic if and only if
it is exact everywhere except possibly at M0.

A cochain complex is a sequence of R-module homomorphisms

N• = · · ·
∂i−2

N−−−→ N i−1 ∂i−1
N−−−→ N i ∂i

N−−→ N i+1 → · · ·

such that ∂i
N∂

i−1
N = 0 for each i, and the ith cohomology module of N• is Hi(N•) =

Ker ∂i
N/ Im ∂i−1

N .
Here is the basic idea of the Koszul complex: If R is a ring and x an element of R, and

M an R-module, consider the homothety (i.e., multiplication) map M
·x
−→M . By definition,

one has
Ker(M

·x
−→M) = {m ∈M |xm = 0} = (0 :M x)

so this map is injective if and only if x is weakly M -regular, i.e., a non-zero-divisor on M .
Furthermore, we have

Im(M
·x
−→M) = xM Coker(M

·x
−→M) = M/xM

so the surjectivity of this map is related to the other half of the definition of x being an
M -regular element. We add 0’s to obtain a chain complex concentrated in degrees 0 and 1:

K•(x;M) = 0 →M
·x
−→M → 0

1



2 CHAPTER 1. KOSZUL COHOMOLOGY

This is the Koszul complex on x with coefficients in M . One verifies easily the isomorphisms

H0(K•(x;M)) ∼= M/xM H1(K•(x;M)) ∼= (0 :M x)

and it follows that x is M -regular if and only if H0(K•(x;M)) 6= 0 and H1(K•(x;M)) = 0.
In the following two sections we outline a generalization of this construction that gives,

among other things, information about when a longer sequence x = x1, . . . , xn is M -regular.

1.2 Construction of the Koszul complex: Method 1

Fix a sequence x = x1, . . . , xn ∈ R. Set K0 = R and K1 = Rn, and let e1, . . . , en ∈ K1 be a
basis. For each i ≥ 2 set Ki = ∧i(K1) = ∧i(Rn) which is a free R-module of rank

(
n
i

)
with

basis
{ej1 ∧ ej2 ∧ . . . ∧ eji

|1 ≤ j1 < j2 < . . . < ji ≤ n}

Observe that Ki = 0 for each i > n, and Kn
∼= R with basis {e1 ∧ . . . ∧ en}. For i < 0 set

Ki = 0. These are the modules in our Koszul complex.
Next, we define the differentials. For i = 1, . . . , n let ∂K

i : Ki → Ki−1 be given by

ej1 ∧ . . . ∧ eji
7→

i∑

k=1

(−1)k+1xkej1 ∧ . . . ∧ êjk
∧ . . . ∧ eji

.

For i > n or i < 1 the map ∂K
i = 0. Since the modules Ki are free with distinguished

bases, the maps ∂i may be written as matrices. Before doing so, let us be clear about our
notational conventions.

Once a basis e1, . . . , en for Rn is specified, we can think of the elements of Rn as col-
umn vectors of length n with entries in R. Under this identification, the basis vector ei
corresponds to the ith standard basis vector:

ei ∼




0
...
1
...
0




Given an R-linear map φ : Rn → Rm where bases have been fixed for Rn and Rm, the
identification with column vectors allows us to write φ as an m × n matrix whose jth
column is the image of the jth basis vector of Rn.

It follows readily that the matrix representing the map ∂K
i consists of 0’s and ±xj ’s.

Let us be more specific in two cases. The map ∂K
1 : K1 → K0 maps ej 7→ xj, and therefore

the matrix is A = (x1 · · · xn). On the other side, ∂K
n : Kn → Kn−1 maps

e1 ∧ . . . ∧ en 7→ x1e2 ∧ . . . ∧ en − x2e1 ∧ e3 ∧ . . . ∧ en−1 + · · ·+ (−1)n+1xne1 ∧ e2 ∧ . . . ∧ en−1

and thus the matrix is

B =




x1

−x2
...

(−1)n+1xn
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and this sequence of homomorphisms is of the form

K• = 0 → R
B
−→ Rn → · · · → Rn A

−→ R→ 0.

Exercise 1.2.1. Verify the following.

(a) ∂K
i ∂

K
i+1 = 0 for each integer i. Thus, K• is a chain complex.

(b) H0(K•) ∼= R/(x) and Hn(K•) ∼= {r ∈ R|xir = 0, ∀i = 1, . . . , n} =
n⋂

i=1

(0 :R xi).

Definition 1.2.2. The complex K• constructed above is the Koszul complex on x, which
we denote K•(x) or K•(x;R).

For an R-module M , set K•(x;M) = K•(x) ⊗R M . This is a chain complex by Exer-
cise 1.2.1 and the functoriality of (−) ⊗R M . It is concentrated in degrees 0 to n with the
following form

0 →M →Mn →M(n

2) → · · · →Mn →M → 0.

The ith homology of this complex Hi(K•(x;M)) is denoted Hi(x;M).

In a dual manner, set K•(x;M) = HomR(K•(x),M) This is a cochain complex concen-
trated in degrees 0 to n with the following form

0 →M →Mn →M(n

2) → · · · →Mn →M → 0.

The ith cohomology of this complex Hi(K•(x;M)) is denoted Hi(x;M). When M = R, we
write K•(x) and Hi(x).

Exercise 1.2.3. Let R = k[X,Y ] and compute Hi(x) and Hi(x) for the following sequences.

(a) x = X,Y

(b) x = X,Y,X + Y

Exercise 1.2.4. Verify the following.

(a) H0(x;M) ∼= M/xM ∼= Hn(x;M)

(b) Hn(x;M) ∼=

n⋂

i=1

(0 :M xi) ∼= H0(x;M)

(c) If R is Noetherian and M is finitely generated, then Hi(x;M) and Hi(x;M) are
finitely generated.

1.3 Construction of the Koszul complex: Method 2

We define the tensor product of two chain complexes X• and Y•. For each integer i set

(X• ⊗R Y•)i = ⊕p+q=i(Xp ⊗R Yq)
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and let ∂X⊗RY
i : (X• ⊗R Y•)i → (X• ⊗R Y•)i−1 be given by

xp ⊗ yq 7→ (∂X
p xp) ⊗ yq + (−1)pxp ⊗ (∂Y

q yq).

The relevant facts about the tensor product, including its connection to the Koszul complex,
are collected in the following exercise.

Exercise 1.3.1. Verify the following.

(a) X• ⊗R Y• is a chain complex.

(b) There exist natural isomorphisms of chain complexes

X• ⊗R Y• ∼= Y• ⊗R X• (X• ⊗R Y•) ⊗R Z•
∼= X• ⊗R (Y• ⊗R Z•).

(Careful of the signs (±).)

(c) For x ∈ R, there is an isomorphism (X• ⊗R K•(x))i ∼= Xi ⊕Xi−1 for each integer i.

Furthermore, the map ∂
X•⊗RK•(x)
i is given by

(
αi

αi−1

)
7→

(
∂X

i αi + (−1)i−1x · αi−1

∂X
i−1αi−1

)
=

(
∂X

i (−1)i−1x·
0 ∂X

i−1

)(
αi

αi−1

)

In other words, the complex X• ⊗R K•(x) is the mapping cone of the homothety

X•
x·
−→ X•.

(d) For x = x1, . . . , xn, there is a natural isomorphism of chain complexes

K•(x) ∼= K•(x1) ⊗R · · · ⊗R K•(xn).

(e) The suspension (or shift) of X• is the chain complex ΣX• given by the data (ΣX)i =
Xi−1 and ∂ΣX

i = −∂X
i−1 : (ΣX)i → (ΣX)i−1. For each integer i, let ǫi : Xi → Xi⊕Xi−1

and τi : Xi ⊕Xi−1 → Xi−1 be given by

αi 7→

(
αi

0

) (
αi

αi−1

)
7→ (−1)i−1αi−1

respectively. These maps describe chain maps ǫ : X• → X• ⊗ K•(x) and τ : X• ⊗
K•(x) → ΣX• that fit into a (degreewise split) short exact sequence of chain com-
plexes

0 → X• → X• ⊗K•(x) → ΣX• → 0.

The associated long exact sequence on homology has the form

· · · → Hi(X•)
·x
−→ Hi(X•) → Hi(X• ⊗K•(x)) → Hi−1(X•)

·x
−→ Hi−1(X•) → · · ·

which induces short exact sequences

0 →
Hi(X•)

xHi(X•)
→ Hi(X• ⊗K•(x)) → (0 :Hi−1(X•) x) → 0.
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(f) Let x = x1, . . . , xn ∈ R and x′ = x1, . . . , xn, xn+1 ∈ R. There is an exact sequence of
chain complexes

0 → K•(x;M) → K•(x
′;M) → ΣK•(x

′M) → 0

and the associated long exact sequence on homology looks like

· · · → Hi(x;M) → Hi−1(x;M)
xn+1
−−−→ Hi−1(x;M) → Hi−1(x

′;M) → · · ·

which gives rise to short exact sequences

0 →
Hi(x;M)

xn+1 Hi(x;M)
→ Hi(x

′;M) → (0 :Hi−1(x;M) xn+1) → 0.

(g) Supp(Hi(x;M)) ⊆ Supp(M) ∩ V (x)

(h) x2
i ∈ Ann(Hi(x;M)) for i = 1, . . . , n. (Actually, xi ∈ Ann(Hi(x;M)). See Corol-

lary 1.4.9.) So (x) + Ann(M) ⊆ Ann(Hi(x;M)).

1.4 Properties of the Koszul complex

Proposition 1.4.1. If L• = . . . → Li → Li−1 → . . . → L1 → L0 → 0 is acyclic and x
is regular on H0(L•) = Coker(∂L

1 ), then L• ⊗R K•(x) is acyclic and H0(L• ⊗R K•(x)) ∼=
H0(L•)/xH0(L•).

Proof. We only need Hi(L• ⊗R K•(x)) = 0 for each i 6= 0. Exercise 1.3.1(e) gives the short
exact sequence

0 →
Hi(L•)

xHi(L•)
→ Hi(L• ⊗R K•(x)) → (0 :Hi−1(L•) x) → 0.

When i 6= 0, our assumptions yield Hi(L•)/xHi(L•) = 0 = (0 :Hi−1(L•) x). Thus, the
displayed sequence implies Hi(L• ⊗R K•(x)) = 0.

Corollary 1.4.2. If L• is a (minimal) R-free resolution of M and x is M -regular, then
L• ⊗R K•(x) is a (minimal) R-free resolution of M/xM .

Corollary 1.4.3. If x is an R-regular sequence, then K•(x) is a free resolution of R/(x).
When R is local, this resolution is minimal.

Corollary 1.4.4. If x is (weakly) M -regular, then Hi(x;M) = 0 for each integer i > 0.

Proof. By induction on n, the length of the sequence. The case n = 1 is easy. Use Propo-
sition 1 for the induction step.

It is natural to ask whether the converse of Corollary 1.4.4 holds. Note that the state-
ment “Hi(x;M) = 0 for each integer i > 0” is independent of the order of the sequence
by Exercise 1.3.1 parts (b) and (d). However, the statement “x is weakly M -regular” is
not independent of the order. So, we should not expect the converse to hold in general.
However, we have the following.
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Proposition 1.4.5. Assume R is Noetherian and M is a finitely generated nonzero R-
module. For a sequence x = x1, . . . , xn ∈ Jac(R), the following conditions are equivalent:

(i) Hi(x;M) = 0 for each i > 0;

(ii) H1(x;M) = 0;

(iii) x is weakly M -regular;

(iv) x is M -regular.

Proof. The implications (i) =⇒ (ii) and (iii) =⇒ (iv) are trivial, while (iv) =⇒ (i) holds by
Corollary 1.4.4.

(ii) =⇒ (iii). Since x is a sequence in the Jacobson radical of R and M is nonzero,
Nakayama’s Lemma implies M/xM 6= 0. So it suffices to show that x is weakly M -regular.
We prove this by induction on n where x = x1, . . . , xn. The case n = 1 is straightforward,
so assume n > 1 and let x̂ = x1, . . . , xn−1. The exact sequence

0 →
H1(x̂;M)

xn H1(x̂;M)
→ H1(x̂;M) → (0 :H0(x̂;M) xn) → 0

and the assumption H1(x;M) = 0 imply that H1(x̂;M) = 0 = (0 :H0(x̂;M) xn). The second
of these equalities shows that xn is a nonzero divisor on M/(x̂)M , while the first gives
H1(x̂;M) = 0 by Nakayama’s Lemma. By induction, the sequence x̂ is weakly M -regular,
and the proof is complete.

Remark 1.4.6. This shows that the Koszul complex has the ability to detect when a
sequence with more than one element is M -regular, as was promised in Section 1.1. Also,
it shows that when x ∈ Jac(R), M is finitely generated, and x is an M -regular sequence,
then any permutation of x is M -regular.

Proposition 1.4.7. Fix x ∈ R and let M be an R-module with L• → R/(x) → 0 a free

resolution. If π : R/(x) →M is an R-linear map, then there exist a chain map K•(x)
φ
−→ L•

such that H0(φ) = π. In other words, there exists a commutative diagram

· · · // 0 //

φn+1=0

��

Kn(x)
∂

K(x)
n //

φn

��

Kn−1(x) //

φn−1

��

· · · // K0(x) //

φ0

��

R/(x) //

π

��

0

· · · // Ln+1
// Ln

∂L
n // Ln−1

// · · · // L0
// M // 0.

Proof. Exercise. Move right-to-left, “lifting” the previous map. Only uses the fact that the
bottom row is exact and the Ki(x) are free.

Corollary 1.4.8. There exist natural maps

Hi(x;M) → TorR
i (R/(x),M) ExtiR(R/(x),M) → Hi(x;M).

When x is an R-regular sequence, these maps are isomorphisms.
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Proof. Let π be the identity on R/(x) and apply Proposition 1.4.7 to obtain φ : K•(x) → L•

where L• → R/(x) → 0 is a free resolution. The first map is Hi(φ ⊗R M) and the second
is Hi(HomR(φ,M)). When x is R-regular, φ is a homotopy equivalence and therefore these
maps are isomorphisms.

Corollary 1.4.9. x ∈ Ann(Hi(x;M)).

Proof. Let A = Z [X1, . . . ,Xn] and let ψ : A → R be given by Xi 7→ xi. This makes
M into an A-module with Xim = xim. One checks easily the isomorphism of complexes
KA

• (X;M) ∼= KR
• (x;M). This yields the first of the following isomorphisms

HR
i (x;M) ∼= HA

i (X;M) ∼= TorA
i (A/(x),M)

where the second isomorphism is by Corollary 1.4.8, since X is A-regular. Therefore

xi H
R
i (x;M) ∼= Xi H

A
i (X;M) ∼= Xi TorA

i (A/(x),M) = 0

as desired.

Conjecture 1.4.10 (Canonical Element Conjecture, (CEC)). Let (R,m, k) be a local
Noetherian ring with a system of parameters x ∈ m. Let F• → k → 0 be a free resolution
of k. As in Proposition 1.4.7, construct a commutative diagram

· · · // 0 // Kn(x) //

φn

��

Kn−1(x) //

φn−1

��

· · · // K0(x) //

φ0

��

R/(x) //

π

��

0

· · · // Fn+1
// Fn

// Fn−1
// · · · // F0

// k // 0

where π is the natural surjection. Then φn 6= 0.

Remark 1.4.11. This was conjectured by Hochster [8] and proved for rings containing
a field (i.e. equicharacteristic). This is easily checked when dimR ≤ 2 or R is Cohen
Macaulay. This was recently verified by Heitmann [6] for dimR = 3; see also [9, 11].

Why has there been so little discussion of Hi(x;M)?

Proposition 1.4.12. There are isomorphisms Hi(x;M) ∼= Hn−i(x;M).

Proof. Map Kn−i⊗RKi → R by u⊗v 7→ u∧v. This describes a perfect pairing and therefore
induces an isomorphism Kn−i → HomR(Ki, R) which can be described as ej1 ∧ . . .∧ejn−i

7→
±ek1 ∧ . . .∧ eki

where {j1, . . . , jn−i} ⊔ {k1, . . . , ki} = {1, . . . , n} and the sign (±) is the sign
of the permutation (

1 · · · n− i n− i+ 1 · · · n
j1 · · · jn−1 k1 · · · ki

)
.

This choice of sign makes the following diagram commute.

Kn−i
//

∼=
��

Kn−i−1

∼=
��

HomR(Ki, R) // HomR(Ki+1, R)
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Now tensor with M and use the fact that Ki is free to obtain a commutative diagram

· · · // Kn−i ⊗R M //

∼=
��

Kn−i−1 ⊗R M

∼=
��

// · · ·

· · · // HomR(Ki,M) // HomR(Ki+1,M) // · · ·

and therefore the desired isomorphisms

We have two more beautiful results with no time to prove them.

Theorem 1.4.13 (Depth Sensitivity of the Koszul Complex). Let R be a ring, I a
finitely generated ideal and M an R-module. Suppose x = x1, . . . , xn and y = y1, . . . , yp

are generating sequences for I, and fix g ∈ N.

(a) Hi(x;M) = 0 for each i = n − g + 1, . . . , n if and only if Hj(y;M) = 0 for each
j = p− g + 1, . . . , p.

(b) If R is Noetherian, M is nonzero and finitely generated, and g = depthI(M), then

Hi(x;M) is

{
= 0 for i = n− g + 1, . . . , n

6= 0 for i = 0, . . . , n− g

so there is are equalities

depthI(M) = g = n− sup{i|Hi(x;M) 6= 0} = inf{i|Hi(x;M) 6= 0}.

It may be helpful to keep track of the vanishing and nonvanishing of the Koszul homolo-
gies and cohomologies visually:

Hn(x;M), . . . ,Hn−g+1(x;M)︸ ︷︷ ︸
=0 for g values

,Hn−g(x;M), . . . ,H0(x;M)︸ ︷︷ ︸
6=0

H0(x;M) · · ·Hg−1(x;M)︸ ︷︷ ︸
=0

,Hg(x;M) · · ·Hn(x;M)︸ ︷︷ ︸
6=0

.

Proof. See [2, (1.6.22) and (1.6.31)].

Remark 1.4.14. This motivates the definition of depth used for non-finitely generated
modules. See [2, Section 9.1].

Before the last theorem, we make some observations and definitions.

Definition 1.4.15. Let (R,m, k) be local and x = x1, . . . , xn ∈ m and M a nonzero
finitely generated R-module such that the length of M/(x)M is finite. Let I = (x)R and
d = dim(M). Then there exist polynomials P (T ) ∈ Q [T ] of degree d such that P (t) =
lengthR(M/It+1M) for t >> 0. Furthermore

P (T ) =
eI(M)

d!
T d + lower degree terms
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with eI(M) ∈ N. This is the Hilbert-Samuel multiplicity of M with respect to the ideal I.
More generally, write eI(M,d) = eI(M) and eI(M,d′) = 0 for each d′ > d.

Observe that Supp(Hi(x;M)) ⊆ Supp(M) ∩ V (x) ⊆ {m} since M/(x)M has finite
length, using Exercise 1.3.1(g). Since Hi(x;M) is finitely generated, by Exercise 1.2.4(c), it
follows that lengthR(Hi(x;M)) <∞ for each i ≥ 0.

The final result of this chapter will be the key to some facts about intersection multi-
plicities.

Theorem 1.4.16. With notation as above, eI(M,n) =
n∑

i=1

(−1)i lengthR(Hi(x;M)).

Proof. See [14, (4.3)].



Chapter 2

Cohen Structure Theorems

Motivating Question: Completions are hard, why do we study them?

Partial Answer: Many questions reduce easily to the complete case since R̂ is faithfully
flat over R (assuming R is local), and complete rings are really nice.

Follow-up Question: How nice are they?

2.1 Fundamentals

Let (R,m, k) be a local ring and ηR : Z → R the natural ring homomorphism given by
mapping 1 7→ 1R.

Exercise 2.1.1. Since R is local, either Ker(ηR) = (0) or Ker(ηR) = (pe) where p is a
prime number and e ∈ N. If R is reduced, then Ker(ηR) = (0) or (p).

Definition 2.1.2. The characteristic of a ring R, denoted char(R), is the unique nonneg-
ative generator of Ker(ηR).

Exercise 2.1.3. The contraction η−1
R (m) is either (0) or (p). Also, the map ηR factors

through the localization Z→ Z
η−1

R
(m), i.e., there is a commutative diagram:Z ηR //

��

RZη−1
R

(m)

;;

Exercise 2.1.4. The following conditions on the local ring R are equivalent:

(i) R contains a copy of Q (as a subring);

(ii) char(k) = 0;

(iii) char(k) = 0 = char(R).

Definition 2.1.5. The local ring R has equal characteristic 0 when the equivalent condi-
tions of Exercise 2.1.4 are satisfied.

10
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Example 2.1.6. The local ring Q [[X1 , . . . ,Xn]] has equal characteristic 0.

Exercise 2.1.7. The following conditions on the local ring R and a prime number p are
equivalent:

(i) R contains a copy of Z/pZ (as a subring);

(ii) char(R) = p;

(iii) char(R) = p = char(k).

Definition 2.1.8. The local ring R has (equal) characteristic p when the equivalent con-
ditions of Exercise 2.1.7 are satisfied.

Example 2.1.9. The local ring Z/pZ[[X1, . . . ,Xn]] has equal characteristic p.

Exercise 2.1.10. The following conditions on the local ring R are equivalent:

(i) R does not contain a field as a subring.

(ii) char(R) 6= char(k)

Definition 2.1.11. The local ring R has mixed characteristic when the equivalent condi-
tions of Exercise 2.1.10 are satisfied. There are two cases:

(a) char(R) = pn > p = char(k) > 0;

(b) char(R) = 0 < p = char(k).

The characteristic of k is the residual characteristic of R.

Example 2.1.12. The local ring Z/pnZ satisfies condition (a) of Definition 2.1.11. Condi-

tion (b) is satisfied by the local rings Z(p) and Ẑ(p).

Remark 2.1.13. When R has mixed characteristic and p = char(k) > 0, we identify p with
its image ηR(p) in R, and it follows that 0 6= p ∈ m. Furthermore, the quotient R/(p)R has
equal characteristic p.

Definition 2.1.14. A local ring (R,m, k) is regular if its maximal ideal can be generated
by a system of parameters for R. By the theorem of Auslander, Buchsbaum and Serre,
the ring R is regular if and only if every finitely generated R-module has finite projective
dimension. A discrete valuation ring is a regular local ring of dimension 1.

Definition 2.1.15. Let R be a regular local ring of mixed characteristic with residual
characteristic p.

(a) R is unramified if p ∈ m\m2, i.e., if p is a part of a regular system of parameters for
R, i.e., the quotient R/(p)R is a regular local ring.

(b) R is ramified if p ∈ m2, i.e., the quotient R/(p)R is not a regular local ring.

Example 2.1.16. The rings Z(p) and Ẑ(p) are unramified regular local rings. For each

i ≥ 2, the local rings Z(p)[[X]]/(p − Xi) and Ẑ(p)[[X]]/(p − Xi) are ramified regular local
rings.
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2.2 The Equal Characteristic Case

Let (R,m, k) be a ring containing a field L.

Definition 2.2.1. A coefficient field for R (if it exists) is a subfield k0 ⊆ R such that the
composition k0 →֒ R� k is an isomorphism.

Warning! If k0 is a coefficient field for R, there are times when k and k0 can be identified
and times when they cannot be identified.

Example 2.2.2. The subring k0 is not usually an R-module in the natural way. If R =
k0[[X]], the field k0 is not closed under multiplication by elements in R. On the other hand,
k = R/m is an R-module. Another way to think of it is that m annihilates k = R/m, but
m does not annihilate k0 (unless m = 0).

Theorem 2.2.3. With (R,m, k) and L as above, assume R is complete.

(a) R admits a coefficient field.

(b) If the composition L →֒ R � k is a separable field extension, then R admits a
coefficient field that contains L.

Proof. See [10, (28.3)]. The proof uses the theory of differential bases.

Exercise 2.2.4. L ⊆ R is a coefficient field if and only if R = L+m.

The last properties in this section follow from Theorem 2.2.3. They compare directly to
properties of rings that are essentially of finite type over a field.

Corollary 2.2.5. With (R,m, k) and L as above, assume R is complete, k0 is a coefficient
field, and x = x1, . . . , xn ∈ m.

(a) There is a well-defined local ring homomorphism Φ: A = k0[[X1, . . . ,Xn]] → R given
by Xi 7→ xi.

(b) If (x) = m, then Φ is surjective.

(c) If x is a system of parameters for R, then Φ is injective and module-finite.

(d) If R is a regular local ring and x is a regular system of parameters, then Φ is an
isomorphism.

2.3 The Mixed Characteristic Case

Let (R,m, k) be a local ring of mixed characteristic with char(k) = p > 0.

Definition 2.3.1. A (complete) p-ring is a (complete) discrete valuation ring (A, pA) of
characteristic 0.

Remark 2.3.2. A p-ring has mixed characteristic since the characteristic of the residue
field of A is char(A/pA) = p.



2.3. THE MIXED CHARACTERISTIC CASE 13

Theorem 2.3.3. Let (R,m, k) and p be as above.

(a) If l is a field of characteristic p, then there exists a complete p-ring (A, pA, l). Such
a ring is unique up to (non-unique) isomorphism.

(b) If R is complete and (A0, pA0, k) is a complete p-ring as in (a), then there exists a
local ring homomorphism φ : A0 → R inducing an isomorphism on residue fields:

A
Φ //

����

R

����
k

∼= // k.

If p is not nilpotent in R, then φ is injective. If p is R-regular, then φ is faithfully
flat.

Proof. See [10, (29.1) and (29.2)]. The proof relies on the theory of smoothness.

Definition 2.3.4. Assume R is complete. A subring R0 ⊂ R is a coefficient ring for R if
(R0, pR0, k) is complete and the inclusion induces an isomorphism of residue fields:

R0
�

�

//

����

R

����
k

∼= // k

i.e., R = R0 +m.

Corollary 2.3.5. Assume that R as above is complete. Let x = x1, . . . , xn ∈ m and fix
φ : A0 → R as in Theorem 2.3.3(b).

(a) The ring R0 = Im(φ) is a coefficient ring for R.

(b) There is a well-defined local ring homomorphism Φ: A = A0[[X1, . . . ,Xn]] → R such
that ψ|A0 = φ and Xi 7→ xi.

(c) If (p,x)R = m, then Φ is surjective.

(d) If p, x1, . . . , xn is a system of parameters for R, then Φ is injective and module-finite.

(e) If R is an unramified regular local ring and p, x1, . . . , xn is a regular system of pa-
rameters, then Φ is an isomorphism.

(f) If R is a ramified regular local ring and x1, . . . , xn is a regular system of param-
eters, then Φ is surjective with its kernel generated by an element of the form
p− f(X1, . . . ,Xn) ∈ A with f(X1, . . . ,Xn) ∈ (X1, . . . ,Xn)2A.
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2.4 Consequences

Corollary 2.4.1. A complete local ring R is a homomorphic image of a regular local ring.
In particular, R is universally catenary.

Proof. The first statement follows from Corollaries 2.2.5(b) and 2.3.5(c). Let A be a com-
plete regular local ring surjecting onto R. The ring A is Cohen-Macaulay and therefore
universally catenary. Hence, R is universally catenary.

Corollary 2.4.2. A complete regular local ring has one of the following forms:

1. (Equal characteristic) k0[[X1, . . . ,Xn]] with k0 a field;

2. (Mixed characteristic, unramified) A0[[X1, . . . ,Xn]] with A0 a complete p-ring;

3. (Mixed characteristic, ramified) A0[[X1, . . . ,Xn]]/(p− f(X1, . . . ,Xn)) with A0 a com-
plete p-ring and f(X1, . . . ,Xn) ∈ (X1, . . . ,Xn)2A0[[X1, . . . ,Xn]].



Chapter 3

Intersection Multiplicities

3.1 Motivation: Intersections in projective space

Let k be an algebraically closed field and X,Y subvarieties of Pd
k such that X ∩ Y is a

finite set of (closed) points. As in differential geometry, we would like, for each Q ∈ X ∩ Y
an “intersection multiplicity” of X and Y at Q, denoted e(Q;X ∩ Y ), with the following
properties:

(a) “dimension inequality”: dimX + dimY ≤ d = dimPd
k.

(b) “nonnegativity”: e(Q;X ∩ Y ) is a nonnegative integer.

(c) “vanishing”: If dimX + dimY < d, then e(Q;X ∩ Y ) = 0.

(d) “positivity”: If dimX + dimY = d, then e(Q;X ∩ Y ) > 0.

(e) “Bézout’s Theorem”: If X ∩ Y = {Q1, . . . , Qr}, then

r∑

i=1

e(Qi;X ∩ Y ) = degreeX · degreeY.

Remark 3.1.1. Here is the geometric motivation for vanishing, which comes from differ-
ential geometry. If dimX+dimY is too small, then it should be possible to perturb X and
Y slightly to new varieties that do not intersect, so the measure of intersection should be
0. In other words, in this case the intersection is accidental.

The motivation for positivity is similar. If dimX + dimY is maximal, then every per-
turbation of X and Y should intersect, so the measure of intersection should not disappear.
In other words, the intersection is essential in this case and should be positively measured.

3.2 First steps

Definition 3.2.1. Let R be a Noetherian ring, and M,N finitely generated R-modules with
lengthR(M ⊗R N) finite. Assume that M or N has finite projective dimension. (By the
symmetry of Tor, we assume pdimRM <∞.) For each i ≥ 0, the module TorR

i (M,N) has

15
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finite length. Furthermore, TorR
i (M,N) = 0 for each i > pdimRM . Thus, the intersection

multiplicity of M and N

χR(M,N) =
∑

i≥0

(−1)i lengthR(TorR
i (M,N))

is a well-defined integer.

Exercise 3.2.2. Assume that R is local with maximal ideal m, and let x = x1, . . . xn ∈ m
be an R-sequence. Let N be a finitely generated R-module such that N/(x)N has finite
length, i.e., lengthR(R/(x) ⊗R N) <∞.

(a) The “dimension theorem” yields

dimN = inf{l ∈ N | ∃y = y1, . . . yl ∈ m such that lengthR(N/(y)N) <∞} ≤ n.

(b) Since x is R-regular, one has dim(R/(x)) = dimR− n. This yields (in)equalities

dim(R/(x)) + dimN ≤ dimR− n+ n = dimR.

Furthermore,

χR(R/(x), N) =
∑

i

(−1)i lengthR(TorR
i (R/(x), N))

=
∑

i

(−1)i lengthR(Hi(x;N))

= e(x)(N,n)

and thus,

χR(R/(x), N) is

{
0 if dimN < n, i.e., if dim(R/(x)) + dimN < dimR

> 0 if dimN = n, i.e., if dim(R/(x)) + dimN = dimR.

Exercise 3.2.3. Let R = k[X1, . . . ,Xd] and let x be an R-sequence and N a finitely
generated R-module such that N/(x)N 6= 0 has finite length. Assume that each Q ∈
MinR(N) satisfies dim(R/Q) = dimN . (This assumption is needed for parts (a) and (c),
but not for part (b).)

(a) dim(R/(x)) + dimN ≤ dimR.

(b) χR(R/(x), N) = 0 if dim(R/(x)) + dimN < dimR.

(c) χR(R/(x), N) > 0 if dim(R/(x)) + dimN = dimR.

(Hint: Pass to the localizations at maximal ideals in the support of N/(x)N .)

Conjecture 3.2.4. Assume that R is a regular local ring and M and N are finitely gener-
ated R-modules such that lengthR(M ⊗R N) <∞.

(a) “dimension inequality”: dimM + dimN ≤ dimR.
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(b) “nonnegativity”: χR(M,N) ≥ 0.

(c) “vanishing”: If dimM + dimN < dimR, then χR(M,N) = 0.

(d) “positivity”: If dimM + dimN = dimR, then χR(M,N) > 0.

Remark 3.2.5. The hypothesis lengthR(M ⊗R N) < ∞ in Conjecture 3.2.4 is crucial, as
the dimension inequality fails easily without it, and χR(M,N) is only defined for pairs M,N
whose tensor product has finite length.

The regularity hypothesis in the conjecture is trickier. If this is dropped, then we need to
assume that at least one of the modules M or N has finite projective dimension in order for
χR(M,N) to be defined. That this is not enough is shown by an example of Dutta, Hochster,
and McLaughlin [3]: With R = k[[X,Y,Z,W ]]/(XY −ZW ) and P = (X,Z)R, there exists a
moduleM of finite length and finite projective dimension such that χR(M,R/P ) < 0. Thus,
such generalizations of nonnegativity and vanishing both fail over this ring. It is not known
if the dimension inequality will fail in this context. Furthermore, it is not known, in general,
whether nonnegativity or vanishing holds if the regularity hypothesis on R is replaced by
the assumption that both M and N have finite projective dimension. See Theorem 3.4.6
for a “special case” that is known.

3.3 The affine case

Here’s what happens in k[X1, . . . Xd]. It suggests how to deal with the case when R is a
regular local ring containing a field. The technique is called “reduction to the diagonal”.
We note that every finitely generated module over this ring has finite projective dimension
by Hilbert’s Syzygy Theorem.

Proposition 3.3.1. Let k be a field and R = k[X1, . . . ,Xd] a polynomial ring. Fix prime
ideals P,Q ⊂ R such that 0 < lengthR(R/P ⊗R R/Q) <∞.

(a) dim(R/P ) + dim(R/Q) ≤ dimR

(b) χR(R/P,R/Q) ≥ 0

(c) χR(R/P,R/Q) = 0 if and only if dim(R/P ) + dim(R/Q) < dimR.

Proof. We begin with the geometric motivation for the proof. The ideals P,Q correspond to
affine subvarieties V,W ⊆ A d . Inside the product A d × A d ∼= A 2d there are two subvarieties
of note: the diagonal ∆ which is isomorphic to A d , and the product V ×W . The classical
descriptions of these are:

∆ = {(a, a) ∈ A d × A d | a ∈ A d}

V ×W = {(v,w) ∈ A d × A d | v ∈ V and w ∈W}.

There is an isomorphism
V ∩W ∼= (V ×W ) ∩ ∆

and the idea of this proof is to replace the triple (V,W, A d ) with the triple (V ×W,∆, A 2d).
(Hence, the phrase “reduction to the diagonal”.) One hopes to make this replacement
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because ∆ is so nice (it is a linear subvariety) and so the result should be (and is) easier
to prove for this second triple. The rest of the proof consists of the algebraic realization of
this process.

We begin by setting

S = R⊗k R ∼= k[Y1, . . . , Yd, Z1, . . . , Zd]

where the isomorphism is given by mapping Xi ⊗ 1 7→ Yi and 1 ⊗Xi 7→ Zi, and letting N
be the S-module

N = R/P ⊗k R/Q ∼=S S/(P ⊗k R+R⊗k Q)

where the denominator of the right hand side makes sense because P⊗kR and R⊗kQ inject
into R⊗k R = S by the flatness of R over k. (Geometrically, S corresponds to A d × A d and
N corresponds to the product V ×W ⊆ A d × A d .)

The k-algebra homomorphism S ∼= k[Y1, . . . , Yd, Z1, . . . , Zd]� k[X1, . . . ,Xd] = R given
by Yi 7→ Xi and Zi 7→ Xi is surjective with kernel ∆ = (Y1 − Z1, . . . , Yd − Zd)S. Thus, R
is identified with the S-algebra R ∼= S/∆. (Geometrically, this “copy” of R corresponds to
the diagonal in A d × A d .

Claim. Every Q ∈ MinS(N) satisfies dim(S/Q) = dimS N = dimR(R/P )+dimR(R/Q).
(Sketch of proof.) Let p = dim(R/P ) and q = dim(R/Q). The Noether Normalization

Lemma guarantees the existence of polynomial subrings

A = k[U1, . . . , Up] →֒ R/P B = k[V1, . . . , Vq] →֒ R/Q

with each embedding module-finite. Tensoring over k yields a module-finite k-algebra em-
bedding

A⊗k B →֒ R/P ⊗k R/Q

and therefore the going-up theorem provides equalities

dimN = dim(R/P ⊗k R/Q) = dim(A⊗k B) = p+ q = dim(R/P ) + dim(R/Q).

Furthermore, each minimal prime P ⊂ R/P ⊗k R/Q has P ∩ (A⊗ B) = 0 and, thus, gives
rise to a module-finite injection

A⊗k B →֒ (R/P ⊗k R/Q)/P.

Another application of going-up yields

dim((R/P ⊗k R/Q)/P) = dim(R/P ) + dim(R/Q). (3.1)

The minimal primes P ⊂ R/P ⊗k R/Q are in bijection with the primes Q ∈ MinS(N) via
the surjection S � R/P ⊗k R/Q. For any such Q with its partner P, the isomorphism

S/Q ∼= (R/P ⊗R/Q)/P

gives the equality
dim(S/Q) = dim((R/P ⊗R/Q)/P)

which, coupled with equation (3.1), completes the proof of the claim.
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(Geometrically, the claim is saying that, even though V ×W is not a variety (i.e., reduced
and irreducible) it is equidimensional of dimension dimV +dimW . Algebraically, the claim
is allowing us to apply Exercise 3.2.3 to the S-modules S/∆ and N .)

To complete the proof, it is straightforward to check the R-isomorphism

S/∆ ⊗S N ∼= R/P ⊗R R/Q.

(Geometrically, this corresponds to the isomorphism ∆∩ (V ×W ) ∼= V ∩W .) In particular,
the tensor product S/∆ ⊗S N has finite length over S. Thus, Exercise 3.2.3 gives the
inequality in the following sequence

dim(R/P ) + dim(R/Q) = dimN

= (dimN + d) − d

= (dimN + dim(S/∆)) − d

≤ dimS − d

= d.

For each i ≥ 0, we have an R-isomorphism

TorS
i (S/∆,N) ∼= TorR

i (R/P,R/Q)

and this yields the equality in the following sequence

χR(R/P,R/Q) = χS(S/∆,N) ≥ 0

where the inequality is by Exercise 3.2.3. Furthermore, equality holds if and only if

dim(S/∆) + dimN < dimS ⇐⇒ d+ (dim(R/P ) + dim(R/Q)) < 2d

⇐⇒ dim(R/P ) + dim(R/Q) < d

which provides the final desired conclusion.

3.4 The local case

Serre verified the dimension inequality part of Conjecture 3.2.4 in general, and the other
parts of the conjecture in the equal characteristic and unramified cases.

Theorem 3.4.1. Assume that R is a regular local ring and M and N are finitely generated
R-modules such that lengthR(M ⊗R N) <∞.

(a) dimM + dimN ≤ dimR.

(b) Assume that R has equal characteristic or is unramified. Then χR(M,N) ≥ 0 with
equality if and only if dimM + dimN < dimR.
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Remark 3.4.2. This theorem shows that we can use χ to give geometric intersection
multiplicities as described in Section 3.1. Indeed, let X,Y ∈ Pd

k be subvarieties such that
X ∩ Y is a finite set of (closed) points, and let O = OPd

k

be the structure sheaf and I = IX

and J = IY be the appropriate sheaves of ideals. For each Q ∈ X ∩ Y , set

e(Q;X ∩ Y ) = χ(OQ/IQ,OQ/JQ).

That this definition satisfies the desired properties (a)–(d) follows from Theorem 3.4.1.
Bézout’s Theorem is also satisfied, but we will not prove that here.

To prove Theorem 3.4.1, say when R contains a field, one might try to use reduction to
the diagonal like in Proposition 3.3.1. However, there are inherent difficulties as the tensor
product of two k-algebras may fail to be Noetherian.

Exercise 3.4.3. If k is a field, then the ring k[[X]]⊗k k[[X]] is not Noetherian. (Hint: Look
at a field extension k(X) →֒ k((X)) which has infinite transcendence degree.)

If one is clever like Serre, though, one uses completed tensor products to get around this
problem.

Definition 3.4.4. Let R = k[[X1, . . . ,Xd]] with k a field and let M and N be finitely
generated R-modules. The completed tensor product of M and N over k is

M⊗̂kN = lim
←−

(p,q)

M/mpM ⊗k N/m
qN.

For a thorough account of the properties of the completed tensor product and its com-
panions the completed Tor’s, see [5, (0.7.2)]. Here are some basic facts that show one
how to prove Theorem 3.4.1 for the ring R = k[[X1, . . . ,Xd]]. The general case of equal
characteristic reduces to this one by passing to the completion.

Fact 3.4.5. Let R = k[[X1, . . . ,Xd]] with k a field and let M and N be finitely generated
R-modules.

(a) The ring S = R⊗̂kR is isomorphic to k[[Y1, . . . , Yd, Z1, . . . , Zd]].

(b) M⊗̂kN is a finitely generated S-module.

(c) The ring homomorphism S � R given by Yi, Zi 7→ Xi is well-defined and surjective
with kernel ∆ = (Y1 − Z1, . . . , Yd − Zd)S.

(d) There is an equality dimS M⊗̂kN = dimRM + dimRN .

(e) For each i ≥ 1, there is a natural isomorphism TorS
i (S/∆,M⊗̂kN) ∼= TorR

i (M,N).

The proof of Theorem 3.4.1 in the unramified case is slightly more delicate, but similar.
Finally, the dimension inequality in the ramified case follows from the multiplicity results in
the unramified case, as a complete ramified regular local ring can be written as a quotient
of an unramified regular local ring by a regular element. See [14] for more details.

Roberts [12] and Gillet-Soulé [4] have verified the Vanishing Conjecture in the ramified
case. Robert’s proof uses techniques from intersection theory, primarily, the formal prop-
erties of localized Chern characters. Gillet-Soulé’s proof is K-theoretic, focusing on the
Adams operations.
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Theorem 3.4.6. Assume that R is a local complete intersection ring and M and N are
finitely generated R-modules such that pdimRM , pdimRN , and lengthR(M ⊗R N) are all
finite. If dimM + dimN < dimR, then χR(M,N) = 0.

Gabber verified the Nonnegativity Conjecture in the ramified case; see [1, 7, 13]. The
proof depends upon de Jong’s theory of regular alterations.

Theorem 3.4.7. If R is a regular local ring and M and N are finitely generated R-modules
such that lengthR(M ⊗R N) <∞, then χR(M,N) ≥ 0.

Remark 3.4.8. The Positivity Conjecture is still open in the ramified case.
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