
COHEN-MACAULAY RINGS

In this hour we will talk about, or build up to talking about, Cohen-Macaulay
rings. This is a class of rings that is closed under the operations of localiza-
tion, completion, adjoining polynomial and power series variables, and taking
certain quotients. First, we need to give some definitions.

Definition: Let A be a ring and M an A-module. An element a ∈ A is said
to be M-regular if ax 6= 0 for all 0 6= x ∈ M . In other words, a is not a zero
divisor on M .

Example: M = A = k[x], where k is a field. Then x is regular on A.

Definition: A sequence a1, . . . , ar of elements of A is an M-sequence (or an
M-regular sequence) if the following two conditions hold:

(1) a1 is M-regular, a2 is M/a1M-regular, etc.

(2) M/
∑

aiM 6= 0.

REMARK: If a1, a2, . . . , ar is an M-sequence, then so is at1
1 , . . . , atr

r , for any
positive integers ti. However, just because a1, . . . , ar is an M-sequence does
not mean that a permutation of a1, . . . , ar is an M-sequence. In order for
any permutation of the sequence to be and M-regular sequence, we would
need the ring to be Noetherian local and the module to be finite

Example: The classical example of a regular sequence is x1, . . . , xr in the
polynomial ring A[x1, . . . , xr].

Non-Example: Let A = k[x, y, z], where k is a field. Show that x, y(1 −
x), z(1 − x) is an A-sequence, but y(1 − x), z(1 − x), x is NOT.

Note that z(1−x) is not regular on A/(y(1−x)) since z(1−x)y = zy−zxy =
zy − zy since y = yx in A/(y(1 − x)).

Let A be a Noetherian ring and M a finite A-module. If x = x1, . . . , xn

is an M-sequence, then the chain (x1) ⊂ (x1, x2) ⊂ · · · ⊂ (x1, x2, . . . , xn)
ascends strictly. Therefore, an M-sequence can be extended to a maximal
such sequence, since A is Noetherian, and hence the chain must terminate..
An M-sequence x1, . . . , xn is maximal if x1, . . . , xn+1 is NOT an M-sequence
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for any xn+1 ∈ R.

REMARK: All maximal M-sequences have the same length if M is finite
(and A is Noetherian).

Let A be a local ring.

Definition: We call this length the depth of M . If we are talking about M-
sequences in a non-maximal ideal I of A, then we use the notation depth(I, M).

Another, more technical definition of depth, is inf{i: Exti
A(k, M) 6= 0}, where

k is the residue field of A. Likewise, depth(I, M) = inf{i: Exti
A(A/I, M) 6=

0}.

Definition: Let (A,m, k) be a Noetherian local ring and M a finite A-module.
M is called Cohen-Macaulay (CM) if M 6= 0 and depth M = dim M . If
A is itself a Cohen-Macaulay module, we say that A is a Cohen-Macaulay
ring.

QUESTION: What happens if A is not local?

Definition: A Noetherian ring A is said to be a CM ring if Am is a CM local
ring for every maximal ideal m of A.

Example: The rings k[X1, . . . , Xn], k[[X1, . . . , Xn]],, k[X, Y, Z]/(XY − Z),
and k[X, Y, Z, W ]/(XY − ZW ) are all Cohen-Macaulay, for example.

Non-Example: The ring A = k[[X4, X3Y, XY 3, Y 4]] ⊂ k[X, Y ] is NOT
Cohen-Macaulay.

Note that A has dimension 2 since {X4, Y 4} is an s.o.p.. In particular,
(X3Y )4 = X12Y 4 ∈ (X4, Y 4); likewise for XY 3. Thus, m ⊂ (X4, Y 4). We’ll
show that Y 4 is not regular on A/(X4). Y 4(X6Y 2) = X6Y 6 = X4(X2Y 6) ∈
(X4), but X6Y 2 /∈ (X4) since X6Y 2 = X4(X2Y 2), and X2Y 2 /∈ A. Thus, we
have found an s.o.p. that is not A-regular.

In order to show that the above example was not Cohen-Macaulay, we used
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the following result.

THEOREM: Let (A,m) be a CM local ring.

(a) For a proper ideal I of A we have ht I = depth(I, A) and ht I+
dim A/I = dim A.

(b) For any sequence a1, . . . , ar ∈ m the following four conditions are
equivalent:

(i) a1, . . . , ar is an A-sequence

(ii) ht(a1, . . . , ai) = i for 1 ≤ i ≤ r

(iii) ht(a1, . . . , ar) = r

(iv) a1, . . . , ar is part of a system of parameters of A

THEOREM: Let (A,m) be a Noetherian local ring and M a finite A-
module.

(a) If a1, . . . , ar ∈ m is an M-sequence and we set M ′ = M/(a1, . . . , ar)M ,
then M is a CM module ⇔ M ′ is a CM module.

(b) If M is a CM module then Mp is a CM module over Ap for everyp ∈ Spec(A), and if Mp 6= 0, then depth(p, M) = depthApMp.
(c) Let Â be the m-adic completion of A. Then (i) depth A = depth

Â and (ii) A is CM ⇔ Â is CM.

(d) If A is CM, then so are A[X] and A[[X]].

Sometimes one only needs a ring or module to be Cohen-Macaulay in “low
dimension”. This concept is called the Serre condition Si, for i ≥ 0.

Definition: The condition Si on A means that depth Ap ≥ min{ht p, i} for
all p ∈ Spec(A).

REMARK 1: Of course, S0 always holds; S1 says that all the associated
primes of A are minimal, that is A does not have embedded associated primes;
for an integral domain, S2 is equivalent to the condition that every prime
divisor of a non-zero principal ideal has height 1

REMARK 2: (Si) for all i ≥ 0 is just the definition for CM ring.

REMARK 3: If Si holds on A, then Sj also holds, for all j < i.
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Definition: To say that a finite module M satisfies Si means that depth Mp ≥
min{dim Mp, i}, for all p ∈ Spec(A).

Definition: We can also define the Serre condition Ri, for i ≥ 0. A Noethe-
rian ring A satisfies Ri if Ap is a regular local ring for all prime ideals p in A
of height less than or equal to i.

REMARK 1: If Ri holds on A, then Rj also holds, for all j < i, since
Ap ∼= (Aq)pAq, for p ⊂ q.
REMARK 2: Recall that the a Noetherian ring A is normal if and only if
the conditions S2 and R1 are satisfied.

Recall that, in general, depth M ≤ dim M ≤ dim A, for a finite A-module
M .

Definition: A small CM module is a finitely-generated module M such that
depth M = dim R. We can also define a big CM module. Let x1, . . . , xd

be a system of parameters. If M is a (not necessarily finitely-generated)
A -module such that (x1, . . . , xd)M 6= M and x1, . . . , xd is an M-regular
sequence, then M is called a big CM module.

SMALL COHEN-MACAULAY CONJECTURE: If R is a complete
local Noetherian ring, then R has a small CM module.

BIG COHEN-MACAULAY CONJECTURE: If R is a local Noethe-
rian ring, then R has a big CM module.
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INJECTIVE MODULES AND GORENSTEIN RINGS

This class of Gorenstein rings is also closed under localization, completion,
and adjoining polynomial and power series variables. We start with some
definitions.

Definition: An A-module I is called injective if given any diagram of A-
module homomorphisms:

0 // N
g

//

f

��

L

I

with top row exact, there exists an A-module homomorphism h : L → I such
that h ◦ g = f .

Definition: Let A be a Noetherian ring and M and N (not necessarily finitely-

generated) A-modules. Then M
α
→֒ N is called essential (i.e., N is an

essential extension of M if N0 ∩ M 6= 0 for every non-zero submodule N0

of N .

Definition: An injective hull of M is an injective module E ⊃ M such that
M →֒ E is essential. The notation is E(M).

THEOREM: Every injective module over a Noetherian ring is a direct sum

of indecomposable injective modules.

PROOF

Say that a family F = {Eλ} of indecomposable (meaning the Eλ can not
be written as the direct sum of two submodules) injective submodules of M
is free if the sum in M of the Eλ’s is direct; i.e., if, for any finite number
Eλ1

, Eλ2
, . . . , Eλn

of them, Eλ1
∩ (Eλ2

+ · · ·+ Eλn
) = 0. Let M be the set of

all free families F, ordered by inclusion. By Zorn’s Lemma, M has a maximal
element, say F0. Write N =

∑
E∈F0

E. Then N is injective, since any direct
sum of injective modules is injective. Since an injective submodule is always
a direct summand, we have M = N ⊕ N ′. If N ′ 6= 0, then since it’s a direct
summand of the injective module M it must be injective itself. Let p ∈
Ass(N ′). Then we have the following diagram:
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0 // A/p � � //
� _

��

E(A/p)
zzu

u

u

u

u

N ′

where L → N ′ is an injection since the other two maps are injections. Thus,
N ′ contains a direct summand E ′ isomorphic to E(A/p), which is indecom-
posable. Since M = N ⊕N ′, this means that E ′ ∩N = 0; i.e., F0 ∪ {E ′} is a
free family, contradicting the maximality of F0. Hence N ′ = 0, and M = N .

Definition: An A-module M has injective dimension ≤ n (inj dim M ≤
n) if there is an injective resolution

0 → M → E0 → E1 → · · · → En → 0

.

If no such finite resolution exists, then inj dim (M) is defined to be ∞.

Definition: A Noetherian local ring A is a Gorenstein ring if any of the
following equivalent conditions hold:

(1) inj dim(A) < ∞

(1’) inj dim(A) = n

(2) Exti
A(k, A) = 0 for i 6= n and ∼= k for i = n

(3) Exti
A(k, A) = 0 for some i > n

(4) Exti
A(k, A) = 0 for i < n and ∼= k for i = n

(4’) A is a CM ring and Extn
A(k, A) ∼= k

(5) A is a CM ring, and every parameter ideal (i.e., generated by a
system of parameters) of A is irreducible (meaning that if I = J ∩ J ′, then
either I = J or I = J ′)

(5’) A is a CM ring and there exists an irreducible parameter ideal

REMARK: There is another useful characterization of Gorenstein rings.
Namely, A is a CM ring of type 1

Definition: The type of a non-zero finite A-module M of depth t is r(M) =

6



dimk Extt
A(k, M).

Example: The rings k[X1, . . . , Xn], k[[X1, . . . , Xn]], k[X, Y, Z]/(XY − Z),
and k[X, Y, Z, W ]/(XY − ZW ) are Gorenstein rings.

Non-Example: (Gor ⊂ CM) Let A = k[X, Y ]/(X2, XY, Y 2), which has di-
mension 0, and hence is a CM ring. The depth of A is also zero, so the type
of A is dimk HomA(k, A). Now Soc(A) = (0 : m)A

∼= HomA(k, A) = m in
this case. Thus, dimk HomA(k, A) = dimkm/m2 = 2. Therefore, since type
of A is greater than 1, A can not be Gorenstein.

Definition:A Noetherian ring is a Gorenstein ring if its localization at every
maximal ideal is a Gorenstein local ring.

THEOREM: Let A be a Noetherian ring.

(a) Suppose A is Gorenstein. Then for every multiplicatively closed set S
in A the localized ring AS is also Gorenstein. In particular, Ap is Gorenstein
for every p ∈ Spec(A).

(b) Suppose x is an A-regular sequence. If A is Gorenstein, then so is
A/(x).

(c) Suppose A is local. Then A is Gorenstein if and only if its completion
Â is Gorenstein.

(d) If A is Gorenstein, then so are A[X] and A[[X]].

REMARK: One way to check if a ring is Gorenstein is to first check if it
is Cohen-Macaulay. If so, then find a system of parameters, kill it, and then
compute the Socle; determine how many linearly independent elements are
in the Socle. This is the type.
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