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1. Notation
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G = SL2(R)

A =
{[

a 0
0 1/a

]}

w =
[

0 −1
1 0

]

N =
{[

1 x
0 1

]}

P =
{[

a x
0 1/a

]}
= AN

P =
{[

a 0
x 1/a

]}
= AN

K =
{[

cos θ − sin θ
sin θ cos θ

]}
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Conjugation by w takes an element of P to

[
0 −1
1 0

] [
a x
0 1/a

] [
0 −1
1 0

]−1

=
[

1/a 0
−x a

]

In particular it acts as involution a �→ a−1 on A and takes P to P .

The group N is normal in P and

[
a 0
0 1/a

] [
1 x
0 1

] [
a 0
0 1/a

]−1

=
[

1 a2x
0 1

]
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If X is a 2 × 2 matrix then the series

expX = I + X +
X2

2
+ · · ·

converges. For small ε

exp εX = I + εX + O(ε2)

Lemma. For any X

det exp(X) = exp traceX

The tangent space g at I on G may be identified with matri-
ces of trace 0.
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exp t

[
1 0
0 −1

]
=

[
et 0
0 e−t

]

exp t

[
0 −1
1 0

]
=

[
cos t − sin t
sin t cos t

]

exp t

[
0 1
0 0

]
=

[
1 t
0 1

]

α =
[

1 0
0 −1

]

κ =
[

0 −1
1 0

]

ν+ =
[

0 1
0 0

]

ν− =
[

0 0
1 0

]
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2. Complex geometry
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The complex projective line is

PC = P
1(C) = C

2 − {0}/C
×: (x, y) �−→ ((x, y))

It is covered by two copies of C

z �−→ ((z, 1)), ((1, z))

whose complements are single points ((1, 0)) and ((0, 1)).

PC = C ∪ {∞} = S2
P

P ′
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The group G acts on C by fractional linear transformations:

[
a b
c d

] [
z
1

]
=

[
az + b
cz + d

]

= (cz + d)
[

(az + b)/(cz + d)
1

]

g

[
z
1

]
= J(g, z)

[
g(z)
1

]

The function J is called the automorphy factor.

The map z �→ (az + b)/cz + d) from C ∪ {∞} to itself is also called
a Möbius transformation.
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g

[
z
1

]
= J(g, z)

[
g(z)
1

]

gh

[
z
1

]
= g

(
J(h, z)

[
h(z)

1

])

= J(g, h(z))J(h, z)
[

gh(z)
1

]

= J(gh, z)
[

h(z)
1

]

J(gh, z) = J(g, h(z))J(h, z)

The function g �→ J(g, z) is a character of the isotropy Fix(z).
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The group P is the stabilizer of ((1, 0)) = ∞:

[
a x
0 1/a

] [
1
0

]
=

[
a
0

]
∼

[
1
0

]

The copies of C are orbits of NC and NC:

[
1 z
0 1

] [
0
1

]
=

[
z
1

]
,

[
1 0
z 1

] [
1
0

]
=

[
1
z

]

This gives us the Bruhat decomposition:

PC = NCw(∞) ∪ {∞}
G = NwP ∪ P

= PwN ∪ PwNw−1

= PN ∪ PwN (open sets)
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Möbius transformations take circles and lines to circles and lines.

0 = αx + βy + C

= RE(α − iβ)(x + iy)) + C

0 = |z − w|2 − r2

= (z − w)(z − w) − r2

= |z|2 − 2 RE(zw) + |w|2 − r2

0 = A|z|2 + 2 RE(Bz) + C

0 = [ z 1 ]
[

A B
B C

] [
z
1

]

Line: A = 0, circle: A �= 0.
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Circles and lines are the null cones of Hermitian forms H with nega-
tive determinants. The stabilizer of the inside of a circle or of a side
of a line is a special unitary group SU(H). The group SL2(R) is the
special unitary group of [

0 i
i 0

]

and hence stabilizes the upper half plane

H = {z = x + iy | y > 0} .

(tXCX = C if and only if CX = tX −1C)
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3. The upper half plane
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Theorem.

y(g(z)) =
y(z)

|cz + d|2 =
y(z)

|J(g, z)|2

y(g(z)) =
1
2i

(
az + b

cz + d
− az + b

cz + d

)

=
1
2i

(az + b)(cz + d) − (az + b)(cz + d)
|cz + d|2

=
(ad − bc)y
|cz + d|2

So we see again that SL2(R) takes H to itself.
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The group K is the isotropy subgroup of i.

ai + b

ci + d
= i, ai + b = −c + di

a = d b = −c

and the matrix =
[

a −c
c a

]

So H = G/K. Since

[
1 x
0 1

] [
a 0
0 1/a

]
: i �−→ ai

1/a
= a2i �−→ a2i + x

1
= a2i + x

the group P acts transitively on H and G = PK.
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Iwasawa decomposition: G = PK.

[
a b
c d

]
=

[
1 (ac + bd)/r
0 1

] [
1/r 0
0 r

] [
γ −σ
σ γ

]

where r =
√

c2 + d2, γ = d/r, σ = c/r.

This is because

g(i) =
ai + b

ci + d
=

(ai + b)(−ci + d)
c2 + d2

=
(ac + bd) + i(ad − bc)

c2 + d2
=

i + (ac + bd)
c2 + d2

= α2i + χ = p(i)

and solve g = pk to get k = p−1g.
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The group K fixes i, and its orbits are circles:

The rotation matrix with angle θ rotates by 2θ in the clockwise direc-
tion.
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Since
dg(z)
dz

=
1

(cz + d)2
, y(g(z)) =

y(z)
|cz + d|2

the metric
|dz|2
y2

=
dz · dz

y2
=

dx2 + dy2

y2

is G-invariant, as is the differential 2-form

dz ∧ dz

(−2i) y2
=

(dx + i dy) ∧ (dx − i dy)
(−2i) y2

=
dx ∧ dy

y2

which hence determines a G-invariant measure on H. The Laplacian
in this metric is

y2

(
∂2

∂x2
+

∂2

∂y2

)
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4. The Cayley transform
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The Cayley transform

z �→ z − i

z + i

takes H to
D =

{
z

∣∣ |z| < 1
}

It is the Möbius transformation associated to the matrix

C =
[

1 −i
1 i

]
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Any element X of SL2(R) acts on D by conjugation:

[
a b
c d

]
�−→ 1

2i

[
1 −i
1 i

] [
a b
c d

] [
i i

−1 1

]

[
c −s
s c

]
�−→

[
c − is 0

0 c + is

]

[
a 0
0 a−1

]
�−→

⎡
⎢⎣

a + a−1

2
a − a−1

2
a − a−1

2
a + a−1

2

⎤
⎥⎦

[
1 x
0 1

]
�−→

[
1 − w w
−w 1 + w

]
(w = x/2i)
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Orbits of A and orbits of N :

0 ∞

1

−1

i

The group SL2(R) acts as non-Euclidean isometries in the Poincaré
model, in which geodesics are arcs intersecting the boundary at right
angles.
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From the action on D we get the Cartan decomposition:

G/K = KA++, G = KA+K

If g = k1ak2 then
g tg = k1a

2k−1
1

so a2 is the eigenvalue matrix of g tg and the columns of k1 are its
eigenvectors.

Here A++ is the group of diagonal matrices with first entry > 1,
which can be arranged by choosing the eigenvalues in the correct
order. I write ++ rather than + to take into account what happens
for groups other than SL2(R).
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5. Vector fields
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The action of a Lie group G on a manifold M determines also vector
fields corresponding to vectors in its Lie algebra, the flows along the
orbits of one-parameter subgroups exp(tX).

The element X in g determines at m the vector

(I + εX)m − m

ε

where we may assume ε2 = 0.

Let’s see what happens for

α =
[

1 0
0 −1

]

ν+ =
[

0 1
0 0

]

κ =
[

0 −1
1 0

]
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On H:

ν+ =
[

0 1
0 0

]
�

[
1 ε
0 1

]

z �−→ z + ε

1
= z + ε

ν+ �−→ ∂

∂x
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On H:

α =
[

1 0
0 −1

]
�

[
1 + ε 0

0 1 − ε

]

z �−→ (1 + ε)z
(1 − ε)

= z(1 + ε)(1 + ε + ε2 + · · · )
= z(1 + 2ε) = z + 2εz

α �−→ 2x
∂

∂x
+ 2y

∂

∂y

28



On H:

κ =
[

0 −1
1 0

]
�

[
1 −ε
ε 1

]

z �−→ z − ε

εz + 1
= z − ε(1 + z2)

κ �−→ −(1 + x2 − y2)
∂

∂x
− 2xy

∂

∂y
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On D:

α =
[

1 0
0 −1

]
�

[
1 ε
ε 1

]

z �−→ z + ε

εz + 1
= z + ε(1 − z2)

α �−→ (1 − z2)
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On D:

ν+ =
[

0 1
0 0

]
�

[
1 − h h
−h 1 + h

]
(h = ε/2i)

z �−→ z + h(z − 1)2

ν+ �−→ (1/2i)(z − 1)2
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6. Measures
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Each of the decompositions or factorizations

G = NAK (Iwasawa)
= P ∪ PwN (Bruhat)
= KA++K (Cartan)

corresponds to a different formula for integration on G.
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G = NAK:

∫
G

f(g) dg =
∫

K

dk

∫
A

δ−1
P (a) da

∫
N

f(nak) dn

This is because G/K = H, H = P · i, and

1
y
· dx · dy

y

is G-invariant.

We’ll say more about this later on.
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G = P ∪ PwN :

∫
G

f(g) dg =
∫

N

dn2

∫
A

δ−1
P (a) da

∫
N

f(n1awn2) dn1

This will be explained later on, when we look at representations as-
sociated to the space P\G.
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G = KA++K:

∫
G

f(g) dg =
∫

K×K

dk1 dk2

∫
A++

|x2 − x−2|f(k1axk2) da

Geometrically, this is equivalent to this assertion:

The circumference of the non-Euclidean circle in H through
iy is π|y − y−1|.

This can be seen easily by transforming to D. The image of iy is
(y−1)/y +1). On H dy/y = dr, and on D dr = 2 dt/(1− t2). Then
one can use radial symmetry to see that the non-Euclidean circumfer-
ence at Euclidean radius t is 4πt/(1 − t2), and interpret in terms of
y.
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7. Conjugation classes
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Suppose g in SL2. Its characteristic equation is

x2 − τx + 1 = 0 (τ = trace(g))

with roots

x =
−τ ±√

τ2 − 4
2

If |τ | > 2 the roots are real and distinct and

g = X

[
x1

x2

]
X−1

fo some X in K. Since conjugation by the element

w =
[

0 −1
1 0

]

interchanges the order of diagonal entries, both x and x−1 give rise
to the same conjugacy class.
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x =
−τ ±√

τ2 − 4
2

If |τ | < 2 the roots are complex, distinct, and of absolute value 1. If
one is c + is with s > 0 then

g = X

[
c + is 0

0 c − is

]
X−1

where
X = [ v v ]

with v the eigenvector for c + is.
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Then

g = X

[
c −s
s c

]
X−1

where now
X = [ RE v IM v ]

If X has positive determinant then g is conjugate to the same ro-
tation matrix in SL2(R), but otherwise to its transpose (or inverse).
Thus there is one class for each 0 < θ < 2π excluding π. Geomet-
rically, the question here is whether g rotates clockwise or counter-
clockwise.
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If |τ | = ±2 we get ±I and also 4 unipotent classes

[
ε ±1
0 ε

]
(ε = ±1)

We can picture SL2 as a solid torus, fibring by circles over the disk
D, and then partition it by conjugacy classes (elliptic, hyperbolic,
unipotent):
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Conjugation classes in the compact group SU(2) are simpler. Every
g in G is conjugate to a unique diagonal matrix t in T with first entry
eiθ , 0 ≤ θ ≤ π. Weyl’s integration formula for G = SU(2) says

∫
G

=
1
2

∫
G/T

dx

∫
T

f(xtx−1) sin2 θ dt

where measures are chosen so G = (G/T ) × T . The 1/2 arises
because in SU(2) the order of eigenvalues doesn’t matter. One thing
the formula means is that if you choose a 2 × 2 unitary matrix with
determinant 1 randomly you are more likely to get one with eigenval-
ues around i than around ±1. In terms of density:

0 π

y = (2/π) sin2 θ
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Something similar happens for SL2, but taking into account the var-
ious eigenvalue possibilities. If T is either A or K, let Greg

T be the
open subset of g conjugate to regular elements of T , WT the order
of NG(T )/T . Then

∫
Greg

T

f(g) dg =
1

|WT |
∫

T

|D(t)| dt

∫
G/T

f(xtx−1) dx

where
D(t) = det(Adg/t(t) − I)

This is proved by looking at the differential of the conjugation map
G/T × T → G.

For A
|D(ax)| = |x2 − 1| |x−2 − 1| = |x − x−1|2

while for K
|D(kθ)| = 4 sin2 θ .
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8. Lifting to the group
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Since H = G/K, functions on H may be lifted to functions on G
invariant under right multiplication by K:

F (g) = f(g(i)) .

It is often necessary to interpret vector fields on H in terms of the
Lie algebra of G interpreted as left-invariant vector fields, acting on
the right, on G.

The key to this translation process is a simple calculation:

[RXF ](g) = [LgXg−1F ](g)

since F (g · (I + ε)X) = F ((I + ε · gXg−1) · g)
[LXF ](g) = [Rg−1XgF ](g)
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On H
p =

[
1 x
0 1

] [
a 0
0 1/a

]

takes i to a2i + x, so RX as a vector field on H is LpXp−1X where
a2 = y. This gives us:

Rκ = 0
Rα = 2y ∂/∂y

Rν+ = y ∂/∂x
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There are some elements of the complex Lie algebra of G that are
useful when dealing with the complex structure on H. To motivate
these, consider the adjoint representation of K on g. The subgroup
K is a torus, and the Lie algebra breaks up first of all into skew-
symmetric and symmetric matrices. The group K acts trivially on
the anti-symmetric component, its won Lie algebra, and acts by rota-
tion on the symmetric part, which may be identified with the tangent
plane of H at i. The eigenvalues and eigenvectors are necessarily
complex. To be precise, if

x± =
[

0 ∓i
∓i 0

]

then
kθx±k−1

θ = e±2iθx±
Since x± = α ∓ i(κ + 2ν+), the previous formulas give us

Rx+ = −2iy ∂/∂z

Rx− = 2iy ∂/∂z
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What right action does the Laplacian correspond to?

There is a very special right-acting differential operator on G called
the Casimir operator (to be explained in detail later):

C = α2/4 − α/2 + ν+ν− = α2/4 − α/2 + ν+ν+ + ν+κ

This satisfies
RC = ∆H)
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SL2(R)

The End
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