$SL_2(\mathbb{R})$

Geometry

Contents

1.	Notation	2
2.	Complex geometry	7
3.	The upper half plane	14
4.	The Cayley transform	20
5.	Vector fields	25
6.	Measures	32
7.	Conjugation classes	37
8.	Lifting to the group	44

1. Notation

$$G = \operatorname{SL}_{2}(\mathbb{R})$$

$$A = \left\{ \begin{bmatrix} a & 0\\ 0 & 1/a \end{bmatrix} \right\}$$

$$w = \begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$$

$$N = \left\{ \begin{bmatrix} 1 & x\\ 0 & 1 \end{bmatrix} \right\}$$

$$P = \left\{ \begin{bmatrix} 1 & x\\ 0 & 1/a \end{bmatrix} \right\} = AN$$

$$\overline{P} = \left\{ \begin{bmatrix} a & x\\ 0 & 1/a \end{bmatrix} \right\} = A\overline{N}$$

$$K = \left\{ \begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta & \cos \theta \end{bmatrix} \right\}$$

Conjugation by \boldsymbol{w} takes an element of \boldsymbol{P} to

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & x \\ 0 & 1/a \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}^{-1} = \begin{bmatrix} 1/a & 0 \\ -x & a \end{bmatrix}$$

In particular it acts as involution $a \mapsto a^{-1}$ on A and takes P to \overline{P} . The group N is normal in P and

$$\begin{bmatrix} a & 0 \\ 0 & 1/a \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 1/a \end{bmatrix}^{-1} = \begin{bmatrix} 1 & a^2 x \\ 0 & 1 \end{bmatrix}$$

If X is a 2×2 matrix then the series

$$\exp X = I + X + \frac{X^2}{2} + \cdots$$

converges. For small $\boldsymbol{\varepsilon}$

$$\exp \varepsilon X = I + \varepsilon X + O(\varepsilon^2)$$

Lemma. For any X

 $\det \exp(X) = \exp \operatorname{trace} X$

The tangent space \mathfrak{g} at I on G may be identified with matrices of trace 0.

$$\exp t \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} e^t & 0 \\ 0 & e^{-t} \end{bmatrix}$$
$$\exp t \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$
$$\exp t \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$$

$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & -1 \\ \\ \kappa = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$\nu_{+} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\nu_{-} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

2. Complex geometry

The complex projective line is

$$\mathbb{P}_{\mathbb{C}} = \mathbb{P}^1(\mathbb{C}) = \mathbb{C}^2 - \{0\}/\mathbb{C}^{\times} : (x, y) \longmapsto ((x, y))$$

It is covered by two copies of ${\mathbb C}$

$$z\longmapsto (\!(z,1)\!), \quad (\!(1,z)\!)$$

whose complements are single points ((1,0)) and ((0,1)).

The group G acts on \mathbb{C} by fractional linear transformations:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix} = \begin{bmatrix} az+b \\ cz+d \end{bmatrix}$$
$$= (cz+d) \begin{bmatrix} (az+b)/(cz+d) \\ 1 \end{bmatrix}$$
$$g \begin{bmatrix} z \\ 1 \end{bmatrix} = J(g,z) \begin{bmatrix} g(z) \\ 1 \end{bmatrix}$$

The function J is called the automorphy factor.

The map $z\mapsto (az+b)/cz+d)$ from $\mathbb{C}\cup\{\infty\}$ to itself is also called a Möbius transformation.

$$g \begin{bmatrix} z \\ 1 \end{bmatrix} = J(g, z) \begin{bmatrix} g(z) \\ 1 \end{bmatrix}$$
$$gh \begin{bmatrix} z \\ 1 \end{bmatrix} = g \left(J(h, z) \begin{bmatrix} h(z) \\ 1 \end{bmatrix} \right)$$
$$= J(g, h(z))J(h, z) \begin{bmatrix} gh(z) \\ 1 \end{bmatrix}$$
$$= J(gh, z) \begin{bmatrix} h(z) \\ 1 \end{bmatrix}$$
$$J(gh, z) = J(g, h(z))J(h, z)$$

The function $g\mapsto J(g,z)$ is a character of the isotropy Fix(z).

The group P is the stabilizer of $((1,0)) = \infty$:

$$\begin{bmatrix} a & x \\ 0 & 1/a \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} a \\ 0 \end{bmatrix} \sim \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

The copies of $\mathbb C$ are orbits of $\overline{N}_{\mathbb C}$ and $N_{\mathbb C}$:

$$\begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} z \\ 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ z & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ z \end{bmatrix}$$

This gives us the Bruhat decomposition:

$$\mathbb{P}_{\mathbb{C}} = N_{\mathbb{C}}w(\infty) \cup \{\infty\}$$
$$G = NwP \cup P$$
$$= PwN \cup PwNw^{-1}$$
$$= P\overline{N} \cup PwN \quad (\text{open sets})$$

Möbius transformations take circles and lines to circles and lines.

$$0 = \alpha x + \beta y + C$$

= RE(\alpha - i\beta)(x + iy)) + C

$$0 = |z - w|^2 - r^2$$

= $(z - w)(\overline{z} - \overline{w}) - r^2$
= $|z|^2 - 2\operatorname{RE}(z\overline{w}) + |w|^2 - r^2$

$$0 = A|z|^2 + 2\operatorname{RE}(Bz) + C$$

$$0 = \begin{bmatrix} \overline{z} & 1 \end{bmatrix} \begin{bmatrix} A & \overline{B} \\ B & C \end{bmatrix} \begin{bmatrix} z \\ 1 \end{bmatrix}$$

Line: A = 0, circle: $A \neq 0$.

Circles and lines are the null cones of Hermitian forms H with negative determinants. The stabilizer of the inside of a circle or of a side of a line is a special unitary group SU(H). The group $SL_2(\mathbb{R})$ is the special unitary group of

and hence stabilizes the upper half plane

$$\mathcal{H} = \{ z = x + iy \, | \, y > 0 \} \,.$$

$$({}^{t}\overline{X}CX = C \text{ if and only if } CX = {}^{t}\overline{X}{}^{-1}C)$$

3. The upper half plane

Theorem.

$$y(g(z)) = \frac{y(z)}{|cz+d|^2} = \frac{y(z)}{|J(g,z)|^2}$$

$$\begin{split} y(g(z)) &= \frac{1}{2i} \left(\frac{az+b}{cz+d} - \frac{a\overline{z}+b}{c\overline{z}+d} \right) \\ &= \frac{1}{2i} \frac{(az+b)(c\overline{z}+d) - (a\overline{z}+b)(cz+d)}{|cz+d|^2} \\ &= \frac{(ad-bc)y}{|cz+d|^2} \end{split}$$

So we see again that $\mathrm{SL}_2(\mathbb{R})$ takes $\mathcal H$ to itself.

The group K is the isotropy subgroup of i.

$$\frac{ai+b}{ci+d} = i, \quad ai+b = -c+di$$
$$a = d \quad b = -c$$
and the matrix
$$= \begin{bmatrix} a & -c \\ c & a \end{bmatrix}$$

So
$$\mathcal{H} = G/K$$
. Since
 $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 1/a \end{bmatrix} : i \longmapsto \frac{ai}{1/a} = a^2 i \longmapsto \frac{a^2 i + x}{1} = a^2 i + x$

the group P acts transitively on \mathcal{H} and G = PK.

Iwasawa decomposition: G = PK.

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & (ac+bd)/r \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/r & 0 \\ 0 & r \end{bmatrix} \begin{bmatrix} \gamma & -\sigma \\ \sigma & \gamma \end{bmatrix}$$

where $r = \sqrt{c^2 + d^2}$, $\gamma = d/r, \sigma = c/r$.

This is because

$$g(i) = \frac{ai+b}{ci+d} = \frac{(ai+b)(-ci+d)}{c^2+d^2}$$

= $\frac{(ac+bd)+i(ad-bc)}{c^2+d^2} = \frac{i+(ac+bd)}{c^2+d^2}$
= $\alpha^2 i + \chi = p(i)$

and solve g = pk to get $k = p^{-1}g$.

The group K fixes i, and its orbits are circles:

The rotation matrix with angle θ rotates by 2θ in the clockwise direction.

Since

the metric

$$\frac{dg(z)}{dz} = \frac{1}{(cz+d)^2}, \quad y(g(z)) = \frac{y(z)}{|cz+d|^2}$$

$$\frac{|dz|^2}{y^2} = \frac{dz \cdot d\overline{z}}{y^2} = \frac{dx^2 + dy}{y^2}$$

is $G\mbox{-invariant},$ as is the differential $2\mbox{-form}$

$$\frac{dz \wedge d\overline{z}}{(-2i)y^2} = \frac{(dx + i\,dy) \wedge (dx - i\,dy)}{(-2i)y^2} = \frac{dx \wedge dy}{y^2}$$

which hence determines a G-invariant measure on \mathcal{H} . The Laplacian in this metric is

$$y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

4. The Cayley transform

The Cayley transform

$$z \mapsto \frac{z-i}{z+i}$$

takes ${\mathcal H}$ to

$$\mathbb{D} = \left\{ z \mid |z| < 1 \right\}$$

It is the Möbius transformation associated to the matrix

Any element X of $SL_2(\mathbb{R})$ acts on \mathbb{D} by conjugation:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \longmapsto \frac{1}{2i} \begin{bmatrix} 1 & -i \\ 1 & i \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} i & i \\ -1 & 1 \end{bmatrix}$$

Orbits of \boldsymbol{A} and orbits of N:

The group $SL_2(\mathbb{R})$ acts as non-Euclidean isometries in the Poincaré model, in which geodesics are arcs intersecting the boundary at right angles.

From the action on \mathbb{D} we get the Cartan decomposition:

$$G/K = KA^{++}, \quad G = KA^+K$$

If $g = k_1 a k_2$ then

$$g^{t}g = k_1 a^2 k_1^{-1}$$

so a^2 is the eigenvalue matrix of g t g and the columns of k_1 are its eigenvectors.

Here A^{++} is the group of diagonal matrices with first entry > 1, which can be arranged by choosing the eigenvalues in the correct order. I write ++ rather than + to take into account what happens for groups other than $SL_2(\mathbb{R})$.

5. Vector fields

The action of a Lie group G on a manifold M determines also vector fields corresponding to vectors in its Lie algebra, the flows along the orbits of one-parameter subgroups $\exp(tX)$.

The element X in \mathfrak{g} determines at m the vector

$$\frac{(I+\varepsilon X)m-m}{\varepsilon}$$

where we may assume $\varepsilon^2=0.$

Let's see what happens for

$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$\nu_{+} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
$$\kappa = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

On \mathcal{H} :

On \mathcal{H} :

$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1+\varepsilon & 0 \\ 0 & 1-\varepsilon \end{bmatrix}$$
$$z \longmapsto \frac{(1+\varepsilon)z}{(1-\varepsilon)}$$
$$= z(1+\varepsilon)(1+\varepsilon+\varepsilon^2+\cdots)$$
$$= z(1+2\varepsilon) = z+2\varepsilon z$$
$$\alpha \longmapsto 2x \frac{\partial}{\partial x} + 2y \frac{\partial}{\partial y}$$

28

On \mathcal{H} :

$$\kappa = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & -\varepsilon \\ \varepsilon & 1 \end{bmatrix}$$
$$z \longmapsto \frac{z - \varepsilon}{\varepsilon z + 1} = z - \varepsilon (1 + z^2)$$
$$\kappa \longmapsto -(1 + x^2 - y^2) \frac{\partial}{\partial x} - 2xy \frac{\partial}{\partial y}$$

On \mathbb{D} :

$$\alpha = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1 & \varepsilon \\ \varepsilon & 1 \end{bmatrix}$$

$$z \mapsto \frac{z+\varepsilon}{\varepsilon z+1} = z + \varepsilon (1-z^2)$$

$$\alpha \longmapsto (1-z^2)$$

On \mathbb{D} :

$$\nu_{+} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \rightsquigarrow \begin{bmatrix} 1-h & h \\ -h & 1+h \end{bmatrix} \quad (h = \varepsilon/2i)$$
$$z \longmapsto z + h(z-1)^{2}$$
$$\nu_{+} \longmapsto (1/2i)(z-1)^{2}$$

6. Measures

Each of the decompositions or factorizations

$$G = NAK$$
 (Iwasawa)
= $P \cup PwN$ (Bruhat)
= $KA^{++}K$ (Cartan)

corresponds to a different formula for integration on G.

G = NAK:

$$\int_{G} f(g) \, dg = \int_{K} \, dk \int_{A} \delta_{P}^{-1}(a) \, da \int_{N} f(nak) \, dn$$

This is because $G/K=\mathcal{H}\text{, }\mathcal{H}=P\cdot i\text{, and}$

$$\frac{1}{y} \cdot dx \cdot \frac{dy}{y}$$

is G-invariant.

We'll say more about this later on.

 $G = P \cup PwN$:

$$\int_{G} f(g) \, dg = \int_{N} \, dn_2 \int_{A} \delta_P^{-1}(a) \, da \int_{N} \, f(n_1 a w n_2) \, dn_1$$

This will be explained later on, when we look at representations associated to the space $P\backslash G.$

 $G = KA^{++}K$:

$$\int_{G} f(g) \, dg = \int_{K \times K} \, dk_1 \, dk_2 \int_{A^{++}} |x^2 - x^{-2}| f(k_1 a_x k_2) \, da$$

Geometrically, this is equivalent to this assertion:

The circumference of the non-Euclidean circle in \mathcal{H} through *iy* is $\pi |y - y^{-1}|$.

This can be seen easily by transforming to \mathbb{D} . The image of iy is (y-1)/y+1). On $\mathcal{H} dy/y = dr$, and on $\mathbb{D} dr = 2 dt/(1-t^2)$. Then one can use radial symmetry to see that the non-Euclidean circumference at Euclidean radius t is $4\pi t/(1-t^2)$, and interpret in terms of y.

7. Conjugation classes

Suppose g in SL_2 . Its characteristic equation is

$$x^2 - \tau x + 1 = 0 \quad (\tau = \operatorname{trace}(g))$$

with roots

$$x = \frac{-\tau \pm \sqrt{\tau^2 - 4}}{2}$$

If $|\tau|>2$ the roots are real and distinct and

$$g = X \begin{bmatrix} x_1 \\ & x_2 \end{bmatrix} X^{-1}$$

fo some X in K. Since conjugation by the element

$$w = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

interchanges the order of diagonal entries, both x and x^{-1} give rise to the same conjugacy class.

$$x = \frac{-\tau \pm \sqrt{\tau^2 - 4}}{2}$$

If $|\tau| < 2$ the roots are complex, distinct, and of absolute value 1. If one is c + is with s > 0 then

$$g = X \begin{bmatrix} c+is & 0\\ 0 & c-is \end{bmatrix} X^{-1}$$

where

$$X = \begin{bmatrix} v & \overline{v} \end{bmatrix}$$

with v the eigenvector for c+is.

Then

$$g = X \begin{bmatrix} c & -s \\ s & c \end{bmatrix} X^{-1}$$

where now

$$X = \begin{bmatrix} \operatorname{RE} v & \operatorname{IM} v \end{bmatrix}$$

If X has positive determinant then g is conjugate to the same rotation matrix in $SL_2(\mathbb{R})$, but otherwise to its transpose (or inverse). Thus there is one class for each $0 < \theta < 2\pi$ excluding π . Geometrically, the question here is whether g rotates clockwise or counterclockwise. If $|\tau| = \pm 2$ we get $\pm I$ and also 4 unipotent classes

$$\begin{bmatrix} \varepsilon & \pm 1 \\ 0 & \varepsilon \end{bmatrix} \quad (\varepsilon = \pm 1)$$

We can picture SL_2 as a solid torus, fibring by circles over the disk \mathbb{D} , and then partition it by conjugacy classes (elliptic, hyperbolic, unipotent):

Conjugation classes in the compact group SU(2) are simpler. Every g in G is conjugate to a unique diagonal matrix t in T with first entry $e^{i\theta}$, $0 \le \theta \le \pi$. Weyl's integration formula for G = SU(2) says

$$\int_G = \frac{1}{2} \int_{G/T} dx \int_T f(xtx^{-1}) \sin^2 \theta \, dt$$

where measures are chosen so $G = (G/T) \times T$. The 1/2 arises because in SU(2) the order of eigenvalues doesn't matter. One thing the formula means is that if you choose a 2×2 unitary matrix with determinant 1 randomly you are more likely to get one with eigenvalues around i than around ± 1 . In terms of density:

Something similar happens for SL_2 , but taking into account the various eigenvalue possibilities. If T is either A or K, let G_T^{reg} be the open subset of g conjugate to regular elements of T, W_T the order of $N_G(T)/T$. Then

$$\int_{G_T^{\text{reg}}} f(g) \, dg = \frac{1}{|W_T|} \int_T |D(t)| \, dt \int_{G/T} f(xtx^{-1}) \, dx$$

where

$$D(t) = \det(\operatorname{Ad}_{\mathfrak{g}/\mathfrak{t}}(t) - I)$$

This is proved by looking at the differential of the conjugation map $G/T \times T \to G$.

For A

$$|D(a_x)| = |x^2 - 1| |x^{-2} - 1| = |x - x^{-1}|^2$$

while for ${\boldsymbol{K}}$

$$|D(k_{\theta})| = 4\sin^2\theta.$$

8. Lifting to the group

Since $\mathcal{H} = G/K$, functions on \mathcal{H} may be lifted to functions on G invariant under right multiplication by K:

$$F(g) = f(g(i)) \,.$$

It is often necessary to interpret vector fields on \mathcal{H} in terms of the Lie algebra of G interpreted as left-invariant vector fields, acting on the right, on G.

The key to this translation process is a simple calculation:

$$[R_X F](g) = [L_{gXg^{-1}} F](g)$$

since $F(g \cdot (I + \varepsilon)X) = F((I + \varepsilon \cdot gXg^{-1}) \cdot g)$
$$[L_X F](g) = [R_{g^{-1}Xg} F](g)$$

On \mathcal{H}

$$p = \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 1/a \end{bmatrix}$$

takes i to $a^2i + x$, so R_X as a vector field on \mathcal{H} is $L_{pXp^{-1}}X$ where $a^2 = y$. This gives us:

$$R_{\kappa} = 0$$
$$R_{\alpha} = 2y \partial/\partial y$$
$$R_{\nu_{+}} = y \partial/\partial x$$

There are some elements of the complex Lie algebra of G that are useful when dealing with the complex structure on \mathcal{H} . To motivate these, consider the adjoint representation of K on \mathfrak{g} . The subgroup K is a torus, and the Lie algebra breaks up first of all into skewsymmetric and symmetric matrices. The group K acts trivially on the anti-symmetric component, its won Lie algebra, and acts by rotation on the symmetric part, which may be identified with the tangent plane of \mathcal{H} at i. The eigenvalues and eigenvectors are necessarily complex. To be precise, if

$$x_{\pm} = \begin{bmatrix} 0 & \mp i \\ \mp i & 0 \end{bmatrix}$$

then

$$k_{\theta} x_{\pm} k_{\theta}^{-1} = e^{\pm 2i\theta} x_{\pm}$$

Since $x_{\pm} = \alpha \mp i(\kappa + 2\nu_{\pm})$, the previous formulas give us

$$R_{x_{+}} = -2iy \,\partial/\partial z$$
$$R_{x_{-}} = 2iy \,\partial/\partial \overline{z}$$

What right action does the Laplacian correspond to?

There is a very special right-acting differential operator on G called the Casimir operator (to be explained in detail later):

$$C = \alpha^2/4 - \alpha/2 + \nu_+\nu_- = \alpha^2/4 - \alpha/2 + \nu_+\nu_+ + \nu_+\kappa$$

This satisfies

$$R_C = \Delta_{\mathcal{H}})$$

The End