$SL_2(\mathbb{R})$

Some loose ends

Contents

1. Lebesgue integration on \mathbb{R}^n 2
2. Integration of forms on \mathbb{R}^n 5
3. Integration on oriented manifolds7
4. Integration on arbitrary manifolds9
5. Homogeneous fibre bundles 13
6. The smooth principal series 17
7. Explicit formulas 22
8. Intertwining operators
9. Characters 34

1. Lebesgue integration on \mathbb{R}^n

If $f(x_1, \ldots, x_n)$ is a smooth function on \mathbb{R}^n with support in the open set X, its integral is

$$\int_X f(x)\,dx_1\,\ldots\,dx_n\,,$$

which can be explicitly calculated (rarely) by reducing it to onedimensional integrals, where one can apply the fundamental theorem of calculus. If we make a change of variables x = h(y)where h is an invertible smooth function the integral becomes

$$\int_{h^{-1}(X)} f(h(y)) \left| \frac{\partial x}{\partial y} \right| dy$$

since $x \in X$ if and only if $y = h^{-1}(x)$ lies in $h^{-1}(X)$. What is important here is that this formula involves the absolute value of the Jacobian determinant.

The change of variables formula in 1D might seem a bit paradoxical but it agrees with the usual rules of calculus. For example

$$\int_{-\infty}^{\infty} f(x) \, dx = -\int_{\infty}^{-\infty} f(-y) \, dy = \int_{-\infty}^{\infty} f(-y) \, dy$$

The point is that this integral represents an integral of a measure.

2. Integration of forms on \mathbb{R}^n

If ω is an *n*-form on \mathbb{R}^n it can be written as $f(x) dx_1 \wedge \ldots \wedge dx_n$ and then its integral is

$$\int_{\mathbb{R}^n} \omega = \int_{\mathbb{R}^n} f(x) \, dx_1 \dots \, dx_n$$

The point is that we have to first arrange the formula for ω so as to match the standard orientation of \mathbb{R}^n .

3. Integration on oriented manifolds

Suppose M to be an oriented manifold. We can cover it by coordinate patches U_i embedded in \mathbb{R}^n in such a way that the orientations all match that of M, and we can find a partition of unity φ_i subordinate to this covering. Then $\varphi_i \omega$ may be identified with a compactly supported form ω_i on \mathbb{R}^n and

$$\int_M \omega = \sum_i \int_{U_i} \omega_i \,.$$

4. Integration on arbitrary manifolds

Suppose now that M is an arbitrary manifold of dimension n_{\bullet} At each point m of M we have the one-dimensional real vector space $\bigwedge^n T_x$. The fibre bundle M of orientations on M is the quotient of $\bigwedge^n T_x - \{0\}$ by the positive real numbers, a set of two elements. The space M is a two-fold covering of M. The manifold M is orientable if and only if this bundle has a section, which is to say that at each point we have a continuous choice of orientation. If it is orientable then we can integrate forms over M, but only after making a choice of orientation. Reversing the orientation will change the sign of the integral. So there is no canonical way to integrate forms on M.

There is, however, a canonical way to integrate something else, called a density or twisted n-form.

The covering \widetilde{M} has a conical involution, interchanging orientations at any point of M. The n-forms on M may be identified with forms on M that are invariant under this involution. Since changing orientation changes the sign of an integral of a form, the integral of such a form on \widetilde{M} is 0. A twisted n form on M is defined to be an n-form on \widetilde{M} that is taken to its negative by the involution. If $\widetilde{\omega}$ is such a form on \widetilde{M} then by definition

$$\int_{M} \widetilde{\omega} = \frac{1}{2} \int_{\widetilde{M}} \widetilde{\omega}$$

In other words, what is invariantly defined on an arbitrary manifold is the integral of a twisted n-form.

The twisted *n*-forms on a manifold are sections of a one-dimensional fibre bundle on M. The fibre at x is the space of all maps f from $\bigwedge^n T_x$ to \mathbb{R} such that

f(cv) = |c|f(v)

On any manifold there always exists at least one twisted n-form that never vanishes.

5. Homogeneous fibre bundles

Suppose now that G is a Lie group and H a closed subgroup. If (σ, U) is a finite-dimensional representation of H, thne there is associated to it a fibre bundle over $H \setminus G$ whos e fibre at any point is non-canonically equal to U. Geometrically it is the quotient of $U \times G$ by the group H taking (u, g) to $(\sigma(h)u, hg)$. The sections of this bundle over $H \setminus G$ are the functions

 $f \colon G \longrightarrow U$

such that $f(hg) = \sigma(h)f(g)$ for all h in H and g in G. One representation of H is that on the tangent space at 1 of $H \setminus G$, which may be identified with $\mathfrak{h} \setminus \mathfrak{g}$. The bundle to conjugation Ad is the tangent bundle. Another is the one dimensional representation of H taking

$$h \longrightarrow |\det \operatorname{Ad}_{\mathfrak{h} \setminus \mathfrak{g}}(h)|^{-1}$$

and the associated bundle is twisted n-forms.

Take $G = SL_2(\mathbb{R})$ and H = P. Here $\mathfrak{p} \setminus \mathfrak{g} = \overline{\mathfrak{n}}$ and the twisted *n*-forms correspond to the character

$$\delta_P \colon \begin{bmatrix} a & x \\ 0 & 1/a \end{bmatrix} \longmapsto a^2$$

Since $a^2 > 0$ these do not differ from ordinary *n*-forms. This remains true for the spaces $\mathbb{P}^1(\mathbb{R}^n)$ with *n* odd, but fails for the non-orientable cases with *n* even.

At any rate, a smooth real twisted *n*-form on $P \setminus G$ may be identified a smooth function f from G to \mathbb{R} such that $f(pg) = \delta_P(p)f(g)$. I write integration of twisted *n*-forms as

$$\int_{P\setminus G}\omega$$

Since G = PK, the quotient $P \setminus G$ may be identified with $K \cap P \setminus K$, and if we assign K a total measure 1 integration on $P \setminus G$ may be identified with integration over K.

There is another way to put this. If f is a smooth function of compact support on G, then

$$\overline{f}(g) = \int_P f(pg) \, d_\ell p$$

is a density on $P\backslash G-\overline{f}(pg)=\delta_P(p)\overline{f}(g).$ Then with suitable normalizations

$$\int_{G} f(g) dg = \int_{P \setminus G} \overline{f}(x)$$
$$= \int_{K} dk \int_{P} f(pk) d_{\ell} p$$
$$= \int_{K} dk \int_{A} \delta_{P}(a)^{-1} da \int_{N} f(nak) dn$$

since the integral with respect to $d_{\ell}P$ can also be expressed as

$$\int_A \delta_P(a)^{-1} \, da \, \int_N f(na) \, dn \, .$$

There is another formula for integration over $P \setminus G$. The set $P\overline{N}$ is open in G, and the integral

$$\int_{\overline{N}} f(\overline{n}) \, d\overline{n}$$

converges. It is, up to a constant, another valid formula. If we identify \overline{N} with \mathbb{R} , what is the constant?

6. The smooth principal series

Any character (continuous homomorphism into \mathbb{C}^{\times}) of A is of the form

$$\chi_{s,m} \colon \begin{bmatrix} x & 0\\ 0 & 1/x \end{bmatrix} \longmapsto |x|^s \operatorname{sgn}^m(x)$$

for some s in \mathbb{C} and m = 0, 1. This will be a unitary character if and only if s = it for some real number t.

Any character of A determines one of P since P/N = A. Any continuous irreducible representation of P is of this form (in particular trivial on N). In any continuous finite-dimensional representation of P the subgroup N is taken to unipotent matrices.

The principal series representations of G are those induced from characters of P.

$$\operatorname{Ind}^{\infty}(\chi \mid P, G) = \{ f \in C^{\infty}(G, \mathbb{C}) \mid f(pg) = \delta_P^{1/2} \chi(p) f(g) \text{ for all } p \in P, g \in G \}$$

The group G acts by the right regular action:

$$R_g f(x) = f(xg)$$

•
$$\operatorname{Ind}^{\infty}(\delta_P^{-1/2}) = C^{\infty}(P \setminus G)$$

•
$$\operatorname{Ind}^{\infty}(\delta_P^{+1/2}) = \Omega^{\infty}(P \setminus G)$$

• $\operatorname{Ind}^{\infty}(\chi^{-1}) =$ the dual of $\operatorname{Ind}^{\infty}(\chi)$

$$\langle f, \varphi \rangle = \int_{P \setminus G} f(x) \varphi(x) \, dx$$

• $\operatorname{Ind}^{\infty}(\chi)$ is unitary if χ is.

The best way to picture $\operatorname{Ind}^{\infty}(\chi)$ is to describe its restriction to K.

Restricting f to K determines a map from K to $\mathbb C$ such that

 $f(pk) = \chi(p)f(k)$

for all p in $P \cap K$. Because G = PK this is an isomorphism. Since $P \cap K = \pm I$ and $\chi(-I) = (-1)^m$:

$$\operatorname{Ind}^{\infty}(\chi) | K = \widehat{\sum}_{n \equiv m \mod 2} \varepsilon^n$$

where $\widehat{\sum}$ means a topological sum (C^{∞} Fourier series).

Let

$$\varphi_n(pk) = \delta^{1/2} \chi(p) \varepsilon^n(k)$$

lf

$$g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

then $\boldsymbol{g}=\boldsymbol{p}\boldsymbol{k}$ where

$$p = \begin{bmatrix} 1/r & (ac+bd)/r \\ 0 & r \end{bmatrix} \quad (r = \sqrt{c^2 + d^2})$$
$$k = \begin{bmatrix} \gamma & -\sigma \\ \sigma & \gamma \end{bmatrix} \quad (\gamma = d/r, \sigma = c/r)$$

Therefore

$$\varphi_n(g) = \delta^{1/2} \chi(1/r) (\gamma + i\,\sigma)^n$$

7. Explicit formulas

The Lie algebra g acts on the subspace of finite sums of the φ_n . Recall the basis of the complex Lie algebra

$$\kappa = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
$$x_{+} = \begin{bmatrix} 1 & -i \\ -i & 0 \end{bmatrix}$$
$$x_{-} = \begin{bmatrix} 1 & i \\ i & 0 \end{bmatrix}$$

$$[\kappa, x_{\pm}] = \pm 2i \, x_{\pm}$$

so that

$$\begin{split} \kappa \varphi_n &= ni \,\varphi_n \\ \kappa(x_{\pm} \varphi_n) &= x_{\pm} (\kappa \varphi_n) \pm 2i x_{\pm} \varphi_n \\ &= (n \pm 2)i \, (x_{\pm} \varphi_n) \\ x_{\pm} \,\varphi_n &= \text{constant} \cdot \varphi_{n \pm 2} \end{split}$$

 $x_{\pm}\varphi_n = \text{constant} \cdot \varphi_{n\pm 2}$

What is the constant? Since $\varepsilon_n(1) = 1$

 $x_{\pm}\varphi_n(1) = constant$

Here the Lie algebra acts on the right. So we use the basic trick (seen before).

$$R_X f(g) = L_{gXg^{-1}} f(g)$$

here with g = 1. Since

$$x_{\pm} = \alpha \mp i(\kappa + 2\nu_{\pm})$$
$$R_{x_{\pm}}\varepsilon_{n}(1) = [L_{\alpha \mp 2i\nu_{\pm}} \mp R_{i\kappa}]\varepsilon_{n}(1)$$
$$= (s + 1 \pm n)$$

Summary:

$$\kappa \varepsilon_n = ni \varepsilon_n$$
$$x_{\pm} \varepsilon_n = (s + 1 \pm n)\varepsilon_n$$

We have seen this before when s = -1 and s + 1 = 0 (except for some small change of sign) caused by a difference between left and right actions. The space of Harmonic functions is isomorphic to $\operatorname{Ind}(\delta^{-1/2})$. More generally:

Every irreducible (\mathfrak{g}, K) -representation can be embedded into a principal series representation.

To be proven in a later lecture.

8. Intertwining operators

Some principal series are isomorphic to other principal series. Some principal series are reducible. To figure out what's going on, we need to calculate the *G*-covariant (or (\mathfrak{g}, K) -covariant) maps from one principal series to another.

The start is a version of Frobenius reciprocity. I recall what this says for a finite group. Let H be a subgroup of another group G. If σ is an irreducible representation of H, we want to know how often an irreducible representation π of G occurs in the representation $I(\sigma)$ induced by σ . The answer is that π occurs as often in $I(\sigma)$ as σ occurs in the restriction of π to H:

$\dim \operatorname{Hom}_{G}(\pi, I(\sigma)) = \dim \operatorname{Hom}_{H}(\sigma, \pi)$

But since represenations of finite groups always decompose completely, this is also

 $\dim \operatorname{Hom}_H(\pi, \sigma)$

Theorem. (Frobenius reciprocity for finite groups) Suppose $H \subseteq G$ are finite groups. If (σ, U) is any finite dimensional representation of H and (π, V) is one of G then there is a canonical isomorphism

 $\operatorname{Hom}_G(\pi, I(\sigma)) \cong \operatorname{Hom}_H(\pi, \sigma)$

$$I(\sigma) = \{f: G \to U | f(hg) = \sigma(h)\}$$

Either side determines the other— $F_G(v) = F_H(\pi(g)v)$.

Let

$$\Lambda_1: \operatorname{Ind}^{\infty}(\chi) \longrightarrow \mathbb{C}, \quad f \longmapsto f(1)$$

Theorem. (Frobenius reciprocity for principal series) If V is a smooth representation of G then composition with Λ_1 induces an isomorphism

$$\operatorname{Hom}(V, \operatorname{Ind}^{\infty}(\chi | P, G)) = \operatorname{Hom}_{P}(V, \delta^{1/2}\chi)$$

The Lie algebra n acts trivially on \mathbb{C} , so any P-map from V to $\delta^{1/2}\chi$ takes $\nu_+ v$ to 0. It must annihilate the subspace nV of V spanned all the $\nu_+ v$. In other words it must factor through the quotient V/nV, on which A acts. So a new version of the theorem is

$$\operatorname{Hom}(V, \operatorname{Ind}^{\infty}(\chi \mid P, G)) = \operatorname{Hom}_{A}(V/\mathfrak{n}V, \delta^{1/2}\chi)$$
$$= \operatorname{Hom}_{A}(\chi^{-1}\delta^{-1/2}, \widehat{V}[\mathfrak{n}])$$

There are two kinds of N-invariant functionals on $\mathrm{Ind}^{\infty}(\chi)$, corresponding to the two components in the Bruhat decomposition

$$G = P \cup PwN$$

Formally, we have the integral

$$\Lambda_w(f) = \int_N f(wn) \, dn$$

which satisfies

$$\Lambda_w(R_{n_*}f) = \int_N f(wnn_*) \, dn$$
$$= \Lambda_w(f)$$

. . .

... and then

$$\begin{split} \Lambda_w(R_a f) &= \int_N f(wna) \, dn \\ &= \int_N f(wa \cdot a^{-1}na) \, dn \\ &= \int_N f(waw^{-1} \cdot w \cdot a^{-1}na) \, dn \\ &= \delta^{1/2} \chi(a^{-1}) \int_N f(w \cdot a^{-1}na) \, dn \\ &= \delta^{-1/2}(a) \chi^{-1}(a) \cdot \delta(a) \int_N f(wn) \, dn \\ &= \delta^{1/2}(a) \chi^{-1}(a) \Lambda_w(f) \end{split}$$

giving rise to a $G\mbox{-}{\rm homomorphism}$

$$T_w: \operatorname{Ind}^{\infty}(\chi) \longrightarrow \operatorname{Ind}^{\infty}(\chi^{-1})$$

When is the integral

$$\Lambda_w(f) = \int_N f(wn) \, dn = \int_{\mathbb{R}} f(wn_x) \, dx \quad \left(n_x = \begin{bmatrix} 1 & x \\ & 1 \end{bmatrix} \right)$$

defined? Since

$$wn_x = \begin{bmatrix} 1/\sqrt{x^2 + 1} & \cdots \\ & \sqrt{x^2 + 1} \end{bmatrix} \begin{bmatrix} x/\sqrt{x^2 + 1} & -1/\sqrt{x^2 + 1} \\ 1/\sqrt{x^2 + 1} & x/\sqrt{x^2 + 1} \end{bmatrix}$$

$$f(wn_x) = (x^2 + 1)^{-(s+1)/2} f(k_x)$$

and

$$\Lambda_w(f) = \int_{\mathbb{R}} (x^2 + 1)^{-(s+1)/2} f(k_x) \, dx$$

Since $(x^2+1)^{-(s+1)/2} \sim 1/x^{s+1}$ this converges and is holomorphic for $\operatorname{RE}(s) > 0$.

Explicitly

$$\Lambda_w(\varphi_0) = \int_{\mathbb{R}} (x^2 + 1)^{-(s+1)/2} \, dx = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}$$

since $\varphi_0(k_x) = 1$. This continues meromorphically to all of \mathbb{C} . Similarly

$$\Lambda_w(\varphi_1) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+2}{2}\right)}$$

Since x_{\pm} commutes with T_w and $x_{\pm} \cdot \varepsilon_n = (s + 1 \pm n)\varepsilon_n$ we see that Λ_w is meromorphic on all of $\operatorname{Ind}(\chi)$.

In fact it is meromorphic on all of $\mathrm{Ind}^\infty(\chi),$ but we'll postpone checking that.

9. Characters

If (π,V) is any smooth representation of G and f lies in $C^\infty_c(G)$ then

$$[\pi(f)](v) = \int_G f(g)\pi(g)v\,dg$$

defines V as a module over $C_c^{\infty}(G)$. This is an element of the vector space of continuous linear maps from V to itself.

If V has finite dimension then $\operatorname{Hom}_{\mathbb{C}}(V,V) = \widehat{V} \otimes V$, and $\pi(f)$ would be an element of this tensor product. One can introduce a topological tensor product that allows us to make the same assertion for a large class of smooth representations, but here I'll look at the case of $V = \operatorname{Ind}^{\infty}(\chi | P, G)$. I shall define $\pi(f)$ as an element of

$$\operatorname{Ind}(\chi^{-1} \otimes \chi | P \times P, G \times G),$$

which is in fact a topological tensor product of $\widehat{V}\,\widehat{\otimes}\,V$ when V is $\mathrm{Ind}^\infty(\chi).$

For any f in $C^\infty_c(G)$ define

$$f_{\chi}(g,h) = \int_{A} \chi \delta_{P}^{-1/2}(a) \, da \, \int_{N} f(h^{-1}nag) \, dn \, ,$$

a function on $G\times G.$

Proposition. The function $f_{\chi}(g,h)$ lies in

$$\operatorname{Ind}^{\infty}(\chi^{-1} \otimes \chi \,|\, P \times P, G \times G)$$

For example

$$\begin{split} f_{\chi}(n_*g,h) &= \int_A \chi \delta_P^{-1/2}(a) \, da \int_N f(h^{-1}na \cdot n_*g) \, dn \\ &= \int_A \chi \delta_P^{-1/2}(a) \, da \int_N f(h^{-1}n \cdot an_*a^{-1} \cdot ag) \, dn \\ &= \int_A \chi \delta_P^{-1/2}(a) \, da \int_N f(h^{-1}nag) \, dn \\ &= f_{\chi}(g,h) \end{split}$$

and

$$\begin{split} f_{\chi}(a_*g,h) &= \int_A \chi \delta_P^{-1/2}(a) \, da \int_N f(h^{-1}na \cdot a_*g) \, dn \\ &= \int_A \chi \delta_P^{-1/2}(ba_*^{-1}) \, db \int_N f(h^{-1}n \cdot bg) \, dn \\ &= \chi^{-1} \delta^{1/2}(a_*) \, f_{\chi}(g,h) \end{split}$$

If F lies in $\operatorname{Ind}^{\infty}(\chi^{-1} \otimes \chi | P \times P, G \times G)$ and φ in $\operatorname{Ind}^{\infty}(\chi)$ then for each fixed h in G the product $F(g, h) \cdot \varphi(g)$ lies in $\Omega^{\infty}(P \setminus G)$, and hence the integral

$$\int_{P \setminus G} F(x,h)\varphi(x) \, dx = [F(\varphi)](h)$$

is defined. The map $\varphi \mapsto F(\varphi)$ is an endomorphism of $\operatorname{Ind}^{\infty}(\chi)$.

If V were finite-dimensional then for any f in $\widehat{V} \otimes V$ its trace when considered as an endomorphism of V would be the image of f under the canonical pairing

$$\widehat{v} \otimes v \longmapsto \langle \widehat{v}, v \rangle$$

This remains valid here. There is a canonical $G \times G$ -covariant map from $\operatorname{Ind}^{\infty}(\chi^{-1} \otimes \chi | P \times P, G \times G)$ to $\Omega^{\infty}(P \times P \setminus G \times G)$ and thence to \mathbb{C} and the trace of F is its image in \mathbb{C} .

We can do things more concretely.

$$\begin{aligned} R_f \varphi(g) &= \int_G f(x) \varphi(gx) \, dx \\ &= \int_G f(g^{-1}y) \varphi(y) \, dy \\ &= \int_K \, dk \int_A \delta_P^{-1}(a) \, da \int_N \varphi(nak) f(g^{-1}nak) \, dn \\ &= \int_K \varphi(k) \, dk \int_A \sigma(a) \delta_P^{-1/2}(a) \, da \int_N f(g^{-1}nak) \, dn \, . \end{aligned}$$

The trace of R_f on $\operatorname{Ind}^{\infty}(\chi)$ is therefore

$$\int_{A} \chi \delta^{-1/2}(a) \, da \int_{N} \overline{f}(na) \, dn \text{ where } \overline{f}(an) = \int_{K} f(kank^{-1}) \, dk$$

The result we eventually want is this:

Theorem. The trace of R_f on $\operatorname{Ind}^{\infty}(\chi)$ is

$$\int_G f(g) \Theta_{\chi}(g) \, dg$$

where

$$\Theta_{\chi}(g) = \frac{\chi(x) + \chi^{-1}(x)}{|x - x^{-1}|}$$

if g is conjugate to a_x and 0 otherwise.

The point here is that the character of $\operatorname{Ind}^{\infty}(\chi)$ is originally defined as a distribution, but it is in fact a distribution defined by the locally summable function Θ_{χ} .

We want to show that

$$\int_A \chi \delta^{-1/2}(a) \, da \int_N \overline{f}(na) \, dn$$

is the same as

$$\int_{G_A} f(g) \Theta_{\chi}(g) \, dg$$

where
$$\Theta_{\chi}(g) = \frac{\chi(x) + \chi^{-1}(x)}{|x - x^{-1}|}$$
 if g is conjugate to a_x .

We can write the first as

$$\int_A \chi(a) \overline{f}_P(a) \, da \text{ where } f_P(a) = \delta^{-1/2}(a) \int_N f(na) \, dn$$

Because Θ is conjugation-invariant we can write the other integral as

$$\begin{split} \int_{G} f(g) \Theta(g) \, dg &= \frac{1}{2} \int_{A} |\Delta(a)| \, \Theta(a) \, da \int_{G/A} f(xax^{-1}) \, dx \quad (\text{Weyl}) \\ &= \frac{1}{2} \int_{A} |\Delta(a)| \, \frac{\chi(a) + \chi^{-1}(a)}{|\Delta(a)|^{1/2}} \, da \int_{G/A} f(xax^{-1}) \, dx \\ &= \frac{1}{2} \int_{A} |\Delta(a)|^{1/2} \left(\chi(a) + \chi^{-1}(a)\right) \, da \int_{G/A} f(xax^{-1}) \, dx \\ &= \int_{A} \chi(a) \, |\Delta(a)|^{1/2} \, da \int_{G/A} f(xax^{-1}) \, dx \, . \end{split}$$

Here $\Delta(a_x) = |x - x^{-1}|$.

We want to show that

$$\int_A \chi(a)\overline{f}_P(a)\,da = \int_A \chi(a)\,|\Delta(a)|^{1/2}\,da\int_{G/A} f(xax^{-1})\,dx$$

i.e.

$$\delta^{-1/2}(a) \int_{N} dn \int_{K} f(knak^{-1}) dk = |\Delta(a)|^{1/2} \int_{G/A} f(xax^{-1}) dx$$

This depends on a lemma of Harish-Chandra's—for any a_x in A with $x^2 \neq 1$ the transformation $n \mapsto n \cdot ana^{-1}$ is bijective with modulus $|\det Ad_n(a) - 1| = |x^2 - 1|$.

You'll need to know that $|x^2 - 1| = |x||x - x^{-1}| = \delta^{1/2}(a_x)\Delta(a)$.

The End