$SL_2(\mathbb{R})$

Some loose ends

Contents

1. Lebesgue integration on \mathbb{R}^n

If $f(x_1,\dotso,x_n)$ is a smooth function on \mathbb{R}^n with support in the \mathbf{p} copen set X , its integral is

$$
\int_X f(x) dx_1 \ldots dx_n ,
$$

which can be explicitly calculated (rarely) by reducing it to onedimensional integrals, where one can apply the fundamental theorem of calculus. If we make a change of variables $x = h(y)$ where h is an invertible smooth function the integral becomes

$$
\int_{h^{-1}(X)} f\big(h(y)\big) \, |\partial x/\partial y| \, dy
$$

 \mathbf{s} **ince** $x \in X$ if and only if $y = h^{-1}(x)$ lies in $h^{-1}(X)$. What is important here is that this formula involves the absolute value of the Jacobian determinant.

The change of variables formula in 1D might seem a bit paradoxical but it agrees with the usual rules of calculus. For example

$$
\int_{-\infty}^{\infty} f(x) dx = -\int_{\infty}^{-\infty} f(-y) dy = \int_{-\infty}^{\infty} f(-y) dy
$$

The point is that this integral represents an integral of a measure.

2. Integration of forms on \mathbb{R}^n

If ω is an n -form on \mathbb{R}^n it can be written as $f(x)\,dx_1\wedge\ldots\wedge dx_n$ and then its integral is

$$
\int_{\mathbb{R}^n} \omega = \int_{\mathbb{R}^n} f(x) dx_1 \dots dx_n
$$

The point is that we have to first arrange the formula for ω so as to match the standard orientation of \mathbb{R}^n .

3. Integration on oriented manifolds

Suppose M to be an oriented manifold. We can cover it by coordinate patches U_i embedded in \mathbb{R}^n in such a way that the orientations all match that of M , and we can find a partition of unity φ_i subordinate to this covering. Then $\varphi_i\omega$ may be identified with a compactly supported form ω_i on \mathbb{R}^n and

$$
\int_M \omega = \sum_i \int_{U_i} \omega_i \,.
$$

4. Integration on arbitrary manifolds

Suppose now that M is an arbitrary manifold of dimension n . At each point m of M we have the one-dimensional real vector space $\bigwedge^n T_x.$ The fibre bundle \widetilde{M} of orientations on M is the quotient of $\bigwedge^n T_x - \{0\}$ by the positive real numbers, a set of two elements. The space M is a two-fold covering of M . The manifold M is orientable if and only if this bundle has a section, which is to say that at each point we have a continuous choice of orientation. If it is orientable then we can integrate forms over M , but only after making a choice of orientation. Reversing the orientation will change the sign of the integral. So there is no canonical way to integrate forms on M .

There is, however, a canonical way to integrate something else, called a density or twisted n -form.

The covering M has a conical involution, interchanging orientations at any point of $M.$ The n -forms on M may be identified with forms on M that are invariant under this involution. Since changing orientation changes the sign of an integral of a form, the integral of such a form on M is 0 . A twisted n form on M is defined to be an n -form on M that is taken to its negative by the involution. If $\widetilde{\omega}$ is such a form on M then by definition

$$
\int_M \widetilde{\omega} = \frac{1}{2} \int_{\widetilde{M}} \widetilde{\omega}
$$

In other words, what is invariantly defined on an arbitrary manifold is the integral of a twisted n -form.

The twisted n -forms on a manifold are sections of a one-dimensional fibre bundle on $M.$ The fibre at x is the space of all maps f from $\bigwedge^n T_x$ to $\mathbb R$ such that

 $f(cv) = |c|f(v)$

On any manifold there always exists at least one twisted n -form that never vanishes.

5. Homogeneous fibre bundles

Suppose now that G is a Lie group and H a closed subgroup. If (σ,U) is a finite-dimensional representation of H , thne there is associated to it a fibre bundle over $H\backslash G$ whos e fibre at any point is non-canonically equal to $U.$ Geometrically it is the quotient of $U\times G$ by the group H taking (u,g) to $(\sigma(h)u,hg)$. The sections of this bundle over $H\backslash G$ are the functions

$$
f\colon G\longrightarrow U
$$

such that $f(hg) \ = \ \sigma(h)f(g)$ for all h in H and g in $G.$ One representation of H is that on the tangent space at 1 of $H\backslash G,$ which may be identified with $\mathfrak{h}\backslash \mathfrak{g}.$ The bundle to conjugation Ad is the tangent bundle. Another is the one dimensional represen- \tanh taking

$$
h \longrightarrow |\det \mathrm{Ad}_{\mathfrak{h} \setminus \mathfrak{g}}(h)|^{-1}
$$

and the associated bundle is twisted n -forms.

Take $G = SL_2(\mathbb{R})$ and $H = P$. Here $\mathfrak{p} \backslash \mathfrak{g} = \overline{\mathfrak{n}}$ and the twisted n -forms correspond to the character

$$
\delta_P \colon \begin{bmatrix} a & x \\ 0 & 1/a \end{bmatrix} \longmapsto a^2
$$

Since $a^2 \, > \, 0$ these do not differ from ordinary n -forms. This remains true for the spaces $\mathbb{P}^1(\mathbb{R}^n)$ with n odd, but fails for the n even.

At any rate, a smooth real twisted n -form on $P\backslash G$ may be identified a smooth function f from G to $\mathbb R$ such that $f(pg)=\delta_P(p)f(g).$ I write integration of twisted n -forms as

$$
\int_{P\backslash G}\omega
$$

Since $G=PK$, the quotient $P\backslash G$ may be identified with $K\cap \overline{K}$ $P\backslash K$, and if we assign K a total measure 1 integration on $P\backslash G$ may be identified with integration over K .

There is another way to put this. If f is a smooth function of \mathbf{c} **ompact support on** G , then

$$
\overline{f}(g) = \int_{P} f(pg) \, d_{\ell} p
$$

is a density on $P \backslash G\!\!-\!\!f(pg) \,=\, \delta_P(p) f(g).$ Then with suitable **normalizations**

$$
\int_G f(g) dg = \int_{P \backslash G} \overline{f}(x)
$$

=
$$
\int_K dk \int_P f(pk) d\rho
$$

=
$$
\int_K dk \int_A \delta_P(a)^{-1} da \int_N f(nak) dn
$$

since the integral with respect to $d_{\ell}P$ can also be expressed as

$$
\int_A \delta_P(a)^{-1} da \int_N f(na) dn.
$$

There is another formula for integration over $P\backslash G$. The set PN is open in G , and the integral

$$
\int_{\overline{N}} f(\overline{n}) \, d\overline{n}
$$

converges. It is, up to a constant, another valid formula. If we identify \overline{N} with $\mathbb R,$ what is the constant?

6. The smooth principal series

Any character (continuous homomorphism into $\mathbb C^{\times}$) of A is of **the form**

$$
\chi_{s,m} \colon \begin{bmatrix} x & 0 \\ 0 & 1/x \end{bmatrix} \longmapsto |x|^s \text{sgn}^m(x)
$$

for some s in $\mathbb C$ and $m=0,\,1.$ This will be a unitary character if and only if $s = it$ for some real number t .

Any character of A determines one of P since $P/N \, = \, A.$ Any continuous irreducible representation of P is of this form (in particular trivial on N). In any continuous finite-dimensional representation of P the subgroup N is taken to unipotent matrices.

The principal series representations of G are those induced from P **.**

$$
\text{Ind}^{\infty}(\chi | P, G)
$$

= $\{f \in C^{\infty}(G, \mathbb{C}) | f(pg) = \delta_P^{1/2} \chi(p)f(g) \text{ for all } p \in P, g \in G\}$

The group G acts by the right regular action:

$$
R_g f(x) = f(xg)
$$

• Ind<sup>$$
\infty
$$</sup> $(\delta_P^{-1/2}) = C^{\infty}(P \setminus G)$

• Ind<sup>$$
\infty
$$</sup> $(\delta_P^{+1/2}) = \Omega^{\infty}(P \setminus G)$

• $\text{Ind}^{\infty}(\chi^{-1}) = \text{ the dual of } \text{Ind}^{\infty}(\chi)$

$$
\langle f, \varphi \rangle = \int_{P \backslash G} f(x) \varphi(x) \, dx
$$

• $\text{Ind}^{\infty}(\chi)$ is unitary if χ is.

The best way to picture $\operatorname{Ind}^\infty(\chi)$ is to describe its restriction to K**.**

Restricting f to K determines a map from K to $\mathbb C$ such that

 $f(pk) = \chi(p)f(k)$

for all p in $P\cap K$. Because $G=PK$ this is an isomorphism. **Since** $P \cap K = \pm I$ and $\chi(-I) = (-1)^m$:

$$
\operatorname{Ind}^\infty(\chi)\,|K=\widehat{\sum}_{n\equiv m \bmod 2}\,\varepsilon^n
$$

where $\widehat{\sum}$ means a topological sum (C^∞ Fourier series).

L e t

$$
\varphi_n(pk) = \delta^{1/2}\chi(p)\varepsilon^n(k)
$$

If

$$
g = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$

 $p \neq p k$ where

$$
p = \begin{bmatrix} 1/r & (ac+bd)/r \\ 0 & r \end{bmatrix} \quad (r = \sqrt{c^2 + d^2})
$$

$$
k = \begin{bmatrix} \gamma & -\sigma \\ \sigma & \gamma \end{bmatrix} \quad (\gamma = d/r, \sigma = c/r)
$$

Therefore

$$
\varphi_n(g) = \delta^{1/2} \chi(1/r) (\gamma + i \sigma)^n
$$

7. Explicit formulas

The Lie algebra $\mathfrak g$ acts on the subspace of finite sums of the $\varphi_n.$ Recall the basis of the complex Lie algebra

$$
\kappa = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
$$

$$
x_{+} = \begin{bmatrix} 1 & -i \\ -i & 0 \end{bmatrix}
$$

$$
x_{-} = \begin{bmatrix} 1 & i \\ i & 0 \end{bmatrix}
$$

$$
[\kappa, x_{\pm}] = \pm 2i x_{\pm}
$$

so that

$$
\kappa \varphi_n = ni \varphi_n
$$

$$
\kappa(x_{\pm}\varphi_n) = x_{\pm}(\kappa \varphi_n) \pm 2ix_{\pm}\varphi_n
$$

$$
= (n \pm 2)i (x_{\pm}\varphi_n)
$$

$$
x_{\pm}\varphi_n = constant \cdot \varphi_{n\pm 2}
$$

 $x_{\pm} \varphi_n = constant \cdot \varphi_{n \pm 2}$

What is the constant? **Since** $\varepsilon_n(1) = 1$

 $x_{\pm} \, \varphi_n(1) = \text{constant}$

Here the Lie algebra acts on the right. So we use the basic trick (seen before).

$$
R_X f(g) = L_{gXg^{-1}} f(g)
$$

 $g = 1$ **. Since**

$$
x_{\pm} = \alpha \mp i(\kappa + 2\nu_{+})
$$

$$
R_{x_{\pm}}\varepsilon_{n}(1) = [L_{\alpha \mp 2i\nu_{+}} \mp R_{i\kappa}]\varepsilon_{n}(1)
$$

 $=(s+1 \pm n)$

Summary:

$$
\kappa \varepsilon_n = ni \varepsilon_n
$$

$$
x_{\pm} \varepsilon_n = (s + 1 \pm n)\varepsilon_n
$$

We have seen this before when $s=-1$ and $s+1=0$ (except for some small change of sign) caused by a difference between left and right actions. The space of Harmonic functions is isomorphic $\mathbf{f} \in \mathrm{Ind}(\delta^{-1/2})$. More generally:

Every irreducible (\mathfrak{g},K) -representation can be embedded into a principal series representation.

To be proven in a later lecture.

8. Intertwining operators

Some principal series are isomorphic to other principal series. Some principal series are reducible. To figure out what's going on, we need to calculate the G -covariant (or (\mathfrak{g},K) -covariant) maps from one principal series to another.

The start is a version of Frobenius reciprocity. I recall what this says for a finite group. Let H be a subgroup of another group G . If σ is an irreducible representation of H , we want to know how often an irreducible representation π of G occurs in the representation $I(\sigma)$ induced by $\sigma.$ The answer is that π occurs as often in $I(\sigma)$ as σ occurs in the restriction of π to H :

$$
\dim \operatorname{Hom}_G(\pi, I(\sigma)) = \dim \operatorname{Hom}_H(\sigma, \pi)
$$

But since represenations of finite groups always decompose **c o m ple t ely, t his is als o**

 $\dim\mathrm{Hom}_H(\pi,\sigma)$

Theorem. (Frobenius reciprocity for finite groups) $Suppose~H\subseteq$ G are finite groups. If (σ, U) is any finite dimensional representation of H and (π, V) is one of G then there is a canonical isomorphism

 $\mathrm{Hom}_G(\pi, I(\sigma)) \cong \mathrm{Hom}_H(\pi, \sigma)$

$$
I(\sigma) = \{f \colon G \to U | f(hg) = \sigma(h)\}
$$

Either side determines the other— $F_G(v) = F_H\big(\pi(g)v\big)$.

L e t

$$
\Lambda_1\colon \operatorname{Ind}^\infty(\chi) \longrightarrow \mathbb{C}, \quad f \longmapsto f(1)
$$

Theorem. (Frobenius reciprocity for principal series) If V is a smooth representation of G then composition with Λ_1 induces an isomorphism

$$
\operatorname{Hom}(V, \operatorname{Ind}^{\infty}(\chi \mid P, G)) = \operatorname{Hom}_P(V, \delta^{1/2}\chi)
$$

The Lie algebra $\mathfrak n$ acts trivially on $\mathbb C,$ so any P -map from V to $\delta^{1/2}\chi$ takes ν_+v to $0.$ It must annihilate the subspace $\mathfrak{n} V$ of V spanned all the ν_+v . In other words it must factor through the quotient $V/\mathfrak{n} V$, on which A acts. So a new version of the theo**r e m is**

$$
\text{Hom}(V, \text{Ind}^{\infty}(\chi \mid P, G)) = \text{Hom}_{A}(V/\mathfrak{n}V, \delta^{1/2}\chi)
$$

$$
= \text{Hom}_{A}(\chi^{-1}\delta^{-1/2}, \widehat{V}[\mathfrak{n}])
$$

There are two kinds of N -invariant functionals on $\mathrm{Ind}^\infty(\chi)$, corresponding to the two components in the Bruhat decomposition

$$
G = P \cup P w N
$$

Formally, we have the integral

$$
\Lambda_w(f) = \int_N f(wn) \, dn
$$

w hic h s a tis fi e s

$$
\Lambda_w(R_{n_*}f) = \int_N f(wnn_*) \, dn
$$

= $\Lambda_w(f)$

 \bullet \bullet \bullet

... and then

$$
\Lambda_w(R_af) = \int_N f(wna) \, dn
$$

=
$$
\int_N f(wa \cdot a^{-1}na) \, dn
$$

=
$$
\int_N f(waw^{-1} \cdot w \cdot a^{-1}na) \, dn
$$

=
$$
\delta^{1/2} \chi(a^{-1}) \int_N f(w \cdot a^{-1}na) \, dn
$$

=
$$
\delta^{-1/2}(a) \chi^{-1}(a) \cdot \delta(a) \int_N f(wn) \, dn
$$

=
$$
\delta^{1/2}(a) \chi^{-1}(a) \Lambda_w(f)
$$

giving rise to a G -homomorphism

$$
T_w
$$
: Ind ^{∞} $(\chi) \longrightarrow$ Ind ^{∞} (χ^{-1})

When is the integral

$$
\Lambda_w(f) = \int_N f(wn) \, dn = \int_{\mathbb{R}} f(wn_x) \, dx \quad \left(n_x = \begin{bmatrix} 1 & x \\ & 1 \end{bmatrix}\right)
$$

defined? Since

$$
wn_x = \begin{bmatrix} 1/\sqrt{x^2+1} & \cdots \\ \sqrt{x^2+1} & \sqrt{x^2+1} \end{bmatrix} \begin{bmatrix} x/\sqrt{x^2+1} & -1/\sqrt{x^2+1} \\ 1/\sqrt{x^2+1} & x/\sqrt{x^2+1} \end{bmatrix}
$$

$$
f(wn_x) = (x^2 + 1)^{-(s+1)/2} f(k_x)
$$

and

$$
\Lambda_w(f) = \int_{\mathbb{R}} (x^2 + 1)^{-(s+1)/2} f(k_x) \, dx
$$

Since $(x^2+1)^{-(s+1)/2} \sim 1/x^{s+1}$ this converges and is holomorphic for $RE(s) > 0$.

Explicitly

$$
\Lambda_w(\varphi_0) = \int_{\mathbb{R}} (x^2 + 1)^{-(s+1)/2} dx = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{s}{2}\right)}{\Gamma\left(\frac{s+1}{2}\right)}
$$

since $\varphi_0(k_x) = 1$. This continues meromorphically to all of \mathbb{C} . **Similarly**

$$
\Lambda_w(\varphi_1) = \frac{\Gamma\left(\frac{1}{2}\right)\Gamma\left(\frac{s+1}{2}\right)}{\Gamma\left(\frac{s+2}{2}\right)}
$$

Since x_{\pm} commutes with T_w and $x_{\pm} \cdot \varepsilon_n = (s + 1 \pm n)\varepsilon_n$ we see that Λ_w is meromorphic on all of $\text{Ind}(\chi)$.

In fact it is meromorphic on all of $\text{Ind}^{\infty}(\chi)$, but we'll postpone checking that.

9. Characters

If (π,V) is any smooth representation of G and f lies in C_c^∞ $\mathop{c\,\olimits}^{\mathop{\infty}}(G)$ **t h e n**

$$
[\pi(f)](v) = \int_G f(g)\pi(g)v \, dg
$$

 $\overline{C_c^\infty}$ $\int_{c}^{\infty}(G)$. This is an element of the vector space of continuous linear maps from V to itself.

If V has finite dimension then $\text{Hom}_{\mathbb{C}}(V,V) = V \otimes V$, and $\pi(f)$ would be an element of this tensor product. One can introduce a topological tensor product that allows us to make the same assertion for a large class of smooth representations, but here I'll look at the case of $V\,=\, \mathrm{Ind}^\infty(\chi\,|\,P,G)$. I shall define $\pi(f)$ as an element of

$$
\mathrm{Ind}(\chi^{-1}\otimes\chi\,|\,P\times P,G\times G)\,,
$$

which is in fact a topological tensor product of $V\,\overline{\otimes}\,V$ when V is $\text{Ind}^{\infty}(\chi)$.

For any f in C_c^∞ $\int_{c}^{\infty}(G)\,$ define

$$
f_{\chi}(g, h) = \int_A \chi \delta_P^{-1/2}(a) \, da \int_N f(h^{-1} n a g) \, dn \,,
$$

a function on $G \times G$.

Proposition. The function $f_\chi(g, h)$ lies in

$$
\text{Ind}^{\infty}(\chi^{-1}\otimes\chi \mid P\times P, G\times G)
$$

For example

$$
f_{\chi}(n_{*}g, h) = \int_{A} \chi \delta_{P}^{-1/2}(a) da \int_{N} f(h^{-1}na \cdot n_{*}g) dn
$$

=
$$
\int_{A} \chi \delta_{P}^{-1/2}(a) da \int_{N} f(h^{-1}n \cdot an_{*}a^{-1} \cdot ag) dn
$$

=
$$
\int_{A} \chi \delta_{P}^{-1/2}(a) da \int_{N} f(h^{-1}na g) dn
$$

=
$$
f_{\chi}(g, h)
$$

a n d

$$
f_{\chi}(a_{*}g, h) = \int_{A} \chi \delta_{P}^{-1/2}(a) da \int_{N} f(h^{-1}na \cdot a_{*}g) dn
$$

=
$$
\int_{A} \chi \delta_{P}^{-1/2}(ba_{*}^{-1}) db \int_{N} f(h^{-1}n \cdot bg) dn
$$

=
$$
\chi^{-1} \delta^{1/2}(a_{*}) f_{\chi}(g, h)
$$

If F lies in $\mathrm{Ind}^\infty(\chi^{-1})$ $\otimes \chi \mid P \times P, G \times G$ and φ in $\text{Ind}^{\infty}(\chi)$ then for each fixed h in G the product $F(g,h)\!\cdot \! \varphi(g)$ lies in $\Omega^\infty(P\backslash G)$, and hence the integral

$$
\int_{P \setminus G} F(x, h) \varphi(x) \, dx = [F(\varphi)](h)
$$

is defined. The map $\varphi \mapsto F(\varphi)$ is an endomorphism of $\mathrm{Ind}^\infty(\chi)$.

If V were finite-dimensional then for any f in $V\otimes V$ its trace when considered as an endomorphism of V would be the image **of** f under the canonical pairing

$$
\widehat{v}\otimes v\longmapsto \langle \widehat{v},v\rangle
$$

This remains valid here. There is a canonical $G\times G$ -covariant $\mathsf{map}\ \mathsf{from}\ \mathrm{Ind}^\infty(\chi^{-1})$ $\otimes \chi \, | \, P \times P, G \times G)$ to $\Omega^\infty (P \times P \backslash G \times G)$ and thence to $\mathbb C$ and the trace of F is its image in $\mathbb C.$

We can do things more concretely.

$$
R_f \varphi(g) = \int_G f(x) \varphi(gx) dx
$$

=
$$
\int_G f(g^{-1}y) \varphi(y) dy
$$

=
$$
\int_K dk \int_A \delta_P^{-1}(a) da \int_N \varphi(nak) f(g^{-1}nak) dn
$$

=
$$
\int_K \varphi(k) dk \int_A \sigma(a) \delta_P^{-1/2}(a) da \int_N f(g^{-1} nak) dn.
$$

 \mathbf{R}_f on $\mathrm{Ind}^\infty(\chi)$ is therefore

$$
\int_A \chi \delta^{-1/2}(a) \, da \int_N \overline{f}(na) \, dn \text{ where } \overline{f}(an) = \int_K f(kank^{-1}) \, dk
$$

4 0

The result we eventually want is this:

Theorem. The trace of R_f on $\text{Ind}^{\infty}(\chi)$ is

$$
\int_G f(g) \Theta_{\chi}(g) \, dg
$$

where

$$
\Theta_{\chi}(g) = \frac{\chi(x) + \chi^{-1}(x)}{|x - x^{-1}|}
$$

if g is conjugate to a_x and 0 otherwise.

The point here is that the character of $\mathrm{Ind}^\infty(\chi)$ is originally defined as a distribution, but it is in fact a distribution defined by \mathbf{c} **locally** summable function Θ_{χ} .

We want to show that

$$
\int_A \chi \delta^{-1/2}(a) \, da \int_N \overline{f}(na) \, dn
$$

is the same as

$$
\int_{G_A} f(g) \Theta_{\chi}(g) \, dg
$$

where
$$
\Theta_{\chi}(g) = \frac{\chi(x) + \chi^{-1}(x)}{|x - x^{-1}|}
$$
 if g is conjugate to a_x .

We can write the first as

$$
\int_A \chi(a)\overline{f}_P(a)\,da \text{ where } f_P(a) = \delta^{-1/2}(a) \int_N f(na)\,dn
$$

Because Θ is conjugation-invariant we can write the other inte**g r al a s**

$$
\int_{G} f(g)\Theta(g) \, dg = \frac{1}{2} \int_{A} |\Delta(a)| \, \Theta(a) \, da \int_{G/A} f(xax^{-1}) \, dx \quad \text{(Weyl)}
$$
\n
$$
= \frac{1}{2} \int_{A} |\Delta(a)| \, \frac{\chi(a) + \chi^{-1}(a)}{|\Delta(a)|^{1/2}} \, da \int_{G/A} f(xax^{-1}) \, dx
$$
\n
$$
= \frac{1}{2} \int_{A} |\Delta(a)|^{1/2} \left(\chi(a) + \chi^{-1}(a) \right) \, da \int_{G/A} f(xax^{-1}) \, dx
$$
\n
$$
= \int_{A} \chi(a) \, |\Delta(a)|^{1/2} \, da \int_{G/A} f(xax^{-1}) \, dx \, .
$$

Here $\Delta(a_x) = |x - x^{-1}|$.

We want to show that

$$
\int_A \chi(a) \overline{f}_P(a) da = \int_A \chi(a) |\Delta(a)|^{1/2} da \int_{G/A} f(xax^{-1}) dx
$$

i.e.

$$
\delta^{-1/2}(a) \int_N dn \int_K f(knak^{-1}) dk = |\Delta(a)|^{1/2} \int_{G/A} f(xax^{-1}) dx
$$

This depends on a lemma of Harish-Chandra's—for any a_x in A with $x^2 \neq 1$ the transformation $n \mapsto n \cdot ana^{-1}$ is bijective with modulus $|\det A d_n(a) - 1| = |x^2 - 1|$.

You'll need to know that $|x^2 - 1| = |x||x - x^{-1}| = \delta^{1/2}(a_x)\Delta(a)$.

The End