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The Transport Equation

∂θ(t, x)

∂t
= −v(t, x) · ∇θ(t, x), t > 0, x ∈ Rd;

θ(0, x) = θ0(x);

v = (v1, . . . , vd) ∈ Rd, d ≥ 2.

If each vi is Lipschitz continuous in x, then

θ(t, x) = θ0(X
x
t,0);

X is the flow of v:
dXx

s,t

dt
= v(t,Xx

s,t), t > s, Xx
s,s = x.
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Turbulent Transport

What if v is not Lipschitz continuous in x?

• Example — Kolmogorov’s theory: v is Hölder ≈ 1/3.

• Difficulty — Existence but no uniqueness for the flow equation.

dXx
s,t

dt
= v(t,Xx

s,t), t > s, Xx
s,s = x.

• How to find θ?
θ(t, x) = θ0(X

x
t,0) is not true
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Regularization

• Introducing viscosity (κ-limit):

∂θκ(t, x)

∂t
= κ∆θκ(t, x)− v(t, x) · ∇θκ(t, x), t > 0, x ∈ Rd;

dXκ,x
s,t = v(t,Xκ,x

s,t )dt +
√

2κdw(t), t > s, Xκ,x
s,s = x.

• Smoothing out v (ε-limit):

vε(t, x) =
1

εd

∫

Rd

v(t, y)ψ

(
x− y

ε

)
dy

(Gawȩdzki and Vergassola (2000), E and Vanden Eijnden (2000))
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Kraichnan′s Model of Turbulence

Physical Model for v:

• v is a statistically homogeneous, isotropic, and stationary Gaussian vector field with zero
mean and covariance

E(vi(t, x)vj(s, y)) = δ(t− s)Cij(x− y).

• For small x, Cij(x) ∼ Cij(0)(1− |x|γ),
0 < γ < 2.

Mathematical Model for v (Le Jan and Raimond (2002), Baxendale, Harris (1988)):

• The matrix C is characterized by its Fourier transform:

Ĉ(z) =
A0

(1 + |z|2)(d+γ)/2

(
a
zz∗

|z|2 +
b

d− 1

(
I − zz∗

|z|2
))

,

• a = 0 ⇒ ∇ · v = 0;
• b = 0 ⇒ v = ∇V for some scalar V .
• ζ = b/(a + b)— degree of incompressibility.
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• Representation of v:

vi(t, x) =
∑

k≥1

σi
k(x)ẇk(t),

ẇk(t) are independent standard Gaussian white noises; {σk, k ≥ 1} is a CONS in HC .
• HC = H(d+γ)/2(Rd;Rd), a, b > 0;
• σi

k is Hölder γ/2.

Cij (x− y) =
∑

k

σi
k(x)σj

k(y),

Thm (Le Jan, Raimond, 2002) For a suitable class of initial conditions θ0, θ (t, x)

θ(t, x) =

∫
θ0(y)P

(
Xx

0,t ∈ dy|FW
t

)
(1)

where

Xt,x (s) = x +

∫ t

s

σk (Xt,x (r)) ◦←−−dwk (r) .

Le Jan and Raimond have also derived an equation for the measure P
(
Xx

0,t ∈ dy|FW
t

)
,

similar to the Zakai equation of nonlinear filtering.

• Statistical (”weak” in probabilistic sense) solution of the flow equation.

• Still very little info about θ (Transport equation is solved in the space of measures, no
uniqueness was established)
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Transport Equation as an SPDE

• F = (Ω,F , {Ft}t≥0,P), a stochastic basis with the usual assumptions.
• (wk(t), k ≥ 1, t ≥ 0), independent standard Wiener processes on F.
• v divergence-free (incompressible flow=⇒ divσk = 0 ).
Since the Kraichnan velocity V:

V i(t, x) =
∑

k≥1

σi
k(x)ẇk(t),

the transport equation is given by

dθ(t, x) = −
∑

k

σk(x) · ∇θ(t, x) ◦ dwk(t).

or

dθ(t, x) = 1
2
Cij(0)DiDjθ(t, x)dt− σi

k(x)Diθ(t, x)dwk(t)

Notation: Di = ∂
∂xi .

Summation convention: summation over a pair of repeating indices.
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Stochastic PDEs with Multiplicative Noise;

Basic facts

Consider a stochastic evolution equation

du(t, x) = A (t, x) u(t, x)dt +
∞∑

k=1

Mk (t, x) u(t, x)dwk(t), u (0, x) = u0 (x)

whereA andM are differential operators, and wk are independent standard Wiener processes
.

(H) : A−1

2
MM∗ is elliptic

If (H) does not hold, one coulld not guarntee that a solution of this equation is square
integrable, i.e. E ‖u (t, ·)‖2

Rd < ∞ for all t;

Examples:

1. A =1
2
∆, M =ε∇, ε < 1−elliptic;

2. A =1
2
∆, M = ∇ −degenerate elliptic;

3. A =1
2
∆, M =ε∇, ε > 1−non-elliptic;

The transport equation

dθ(t, x) =
1

2
Cij(0)DiDjθ(t, x)dt− σi

k(x)Diθ(t, x)dwk(t)

is degenerate elliptic!

(Krylov-R., P. Chow, J. Potthoff, B. Øksendal, etc. σ-smooth)
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A Wiener Chaos Approach to Solving the Stochastic Transport Equation

Wiener chaos:

W (t) = (wk(t), k ≥ 1, 0 < t < T ),

{mi(s), i ≥ 1} — CONS in L2([0, T ]),

ξk
i =

∫ T

0
mi(s)dwk(s).

J =
(
α = (αk

i , i, k ≥ 1)
∣∣∣ |α| = ∑

i,k αk
i < ∞

)
;

ξα =
∏

i,k

(
H

αk
i
(ξik)√
αk

i !

)
, where

Hn(x) = (−1)n exp
{

x2

2

}
dn

dxn exp
{
−x2

2

}
.

Theorem. (Cameron and Martin, 1947)

The collection {ξα, α ∈ J } is an orthonormal basis in L2(Ω,FW
T ,P):

If η ∈ L2(Ω,FW
T ,P) and ηα = E(ηξα), then

η =
∑
α∈J

ηαξα

and
E|η|2 =

∑
α∈J

η2
α.
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The Propagator System

dθ(t, x) = 1
2
Cij(0)DiDjθ(t, x)dt− σi

k(x)Diθ(t, x)dwk(t)

If σi
k, θ0 are smooth, then the STE has a nice square integrable solution, moreover θ(t, x) =∑

α∈J θα(t, x)ξα (t) .

Define: ξα(t) = E(ξα|FW
t ); ξα(0) = I(|α| = 0).

Fact:
dξα(t) = Dξα(t)dW (t) ,

where

Dξα (t) = mi (t)
√

αk
i ξα−(i,k)(t)`k is the Maliavin derivative, and α−(i, k) is the multi-index

with the components

(α−(i, k))
l
j =

{
max(αk

i − 1, 0), if i = j and k = l,
αl

j, otherwise.

By the Itô formula

∂θα(t, x)

∂t
=

1

2
Cij(0)DiDjθα(t, x)

−
∑

i,k

√
αk

i σ
j
k(x)Djθα−(i,k)(t, x)mi(t);

θα(0, x) = θ0(x)I(|α| = 0)
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Solving the Pr opagator

Good news: σi
k do not have to be smooth or even continuous.

|α| = 0:

∂θ(0)(t, x)

∂t
=

1

2
Cij(0)DiDjθ(0)(t, x)

θ(0)(0, x) = θ0(x) ⇒ θ(0)(t, x) = Ttθ0(x).

α = δik:

∂θ(ik)(t, x)

∂t
=

1

2
Cij(0)DiDjθ(ik)(t, x)

− σj
k(x)Djθ(0)(t, x)mi(t); θ(ik)(0, x) = 0.

θik(t, x) = − ∫ t

0
mi(s)Tt−sσ

j
kDjTsθ0(x)ds.

In fact, with Mk = −σj
kDj,

∑

|α|=N

|θα (t, x)|2 =
∞∑

k1,...,kN=1

∫ t

0

∫ sN

0

. . .

∫ s2

0

|Tt−sN
MkN

. . .Ts2−s1Mk1Ts1θ0(x)|2ds1 . . . dsN .
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∃!in L2

dθ(t, x) =
1

2
Cij(0)DiDjθ(t, x)dt− σi

k(x)Diθ(t, x)dwk(t)

Thm (Lototsky and R., Russian Math. Surveys, 2003)

If θ0 ∈ L2(Rd), then:

• For every ϕ ∈ C∞
0 (Rd), the random field θ(t, x) =

∑
α∈J θα(t, x)ξα is a unique strong

solution of the transport equation in that for any test-function ϕ,

(θ, ϕ)(t) = (θ0, ϕ) +
1

2

∫ t

0

Cij(0)(θ,DiDjϕ)(s)ds

+

∫ t

0

(θ, σi
kDiϕ)dwk(s)

• For t > 0,

‖θ (t) ‖2
L2(Rd) =

∑
α∈J

‖θα(t)‖2
L2(Rd) < ‖θ0‖2

L2(Rd).

• For

dsX
x,i
t (s) = −σi

k (Xx
t (s))

←−−
dwk (s) , s ∈ [0, t),

Xx
t (t) = x

(martingale solution), and

θ (t, x) = E
(
θ0 (Xx

t (0)) |FW
t

)
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Re marks

• Eθ(t, x) = θ∅(t, x). (∅ is a multi-index with zero entries)

• E(θ(t, x)θ(s, y)) =
∑

α∈J θα(t, x)θα(s, y).

• By interpolation: E‖θ‖p
Lp(Rd)

< ‖θ0‖p
Lp(Rd)

, 2 < p < ∞. Weighted Lp (e.g. θ0(x) = |x|)
are also OK.

• Conservation of energy, E‖θ (t) ‖2
L2(Rd)

= ‖θ0‖2
L2(Rd)

,

m
• Pathwise solution of the flow equation.
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Totally Turbulent Transport

dθ(t, x) = ν∆θ(t, x)dt− σi
k(x)Diθ(t, x)dwk(t),

σk, k ≥ 1 — CONS in L2(Rd;Rd)⇔Ẇ is space-time white noise

Note:
∑

k≥1 σi
k(x)σj

k(x) diverges.

S-system:

∂θα(t, x)

∂t
= ν∆θα(t, x)

−
∑

i,k

√
αk

i σ
j
k(x)Djθα−(i,k)(t, x)mi(t);

Still solvable, but now

∑
α∈J

‖θα‖2
L2(Rd) = ∞
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Weighted Wiener Chaos

Let Q := {q1, q2, ...} , qk > 0, and qα := Πι,kq
αk

i
k .

Definition. The Q-weighted Wiener Chaos space L2,Q(FW
T ; L2

(
Rd

)
) is

L2,Q(FW
T ; L2

(
Rd

)
) =

{
(uα) :

∑
α∈J

q−2α‖uα‖2
L2(Rd) < ∞

}
.

Still write u =
∑

α∈J uαξα

Where this series converges?

Examples:

1. (Obvious) If u(t) = 1 +
∑

k≥1

∫ t

0
u(s)dwk(s), then u ∈ L2,Q(FW

T ;R) for every Q =
(q1, q2, . . .) so that

∑
k≥1 q2

k < ∞.

2. (Nualart-R., JFA, 1997) If

du(t, x) = ∆u(t, x)dt + u(t, x)dw(t, x), t > 0, x ∈ Rd, d ≥ 2,

then u ∈ L2,Q(FW
T ; L2(Rd)) for some Q.
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Theorem (Lototsky-R., Annals of Prob. 2005)

Assume that θ0 ∈ L2(Rd) and |σi
k(x)| ≤ Ck. Let Q be a sequence with qk =

√
δν

d2kCk
for some

0 < δ < 2. If

∂θα(t, x)

∂t
= ν∆θα(t, x)

−
∑

i,k

√
αk

i σ
j
k(x)Djθα−(i,k)(t, x)mi(t);

then
∑

α∈J q2α‖θα(t)‖2
L2(Rd)

< ∞
and θ(t, x) =

∑
α∈J θα(t, x)ξα satisfies

θ ∈ L2,Q

(FW
T ;C((0, T ); L2(Rd)

)
.

This θ is called the Wiener Chaos solution of the totally turbulent transport equation
dθ(t, x) = ν∆θ(t, x)dt− σi

k(x)Diθ(t, x)dwk(t).
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Wiener Chaos Approach

• Computable expressions for the solution and its moments from the S-system.

• New regularity results.

• Possibilities for generalization.

Further Directions

• Anticipating equations.

• Elliptic equations.

• Nonlinear equations.

The main results can be found in:
1. S. Lototsky, B. L. Rozovskii. Passive Scalar Equation in a Turbu-
lent Incompressible Gaussian Velocity Field. Russian Math. Surv.
59 (2004), No.2,

2. S. Lototsky, B. L. Rozovskii. Wiener chaos solutions of linear
stochastic evolution equations. Ann. Probab. (2006, to appear).
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