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1 Introduction

This paper grew out of a conjecture by Benedict H. Gross in his paper 'An
elliptic curve test for Mersenne Primes.” On page five of this paper he states
“Corollary 1.4% implies that when p = 2! — 1 is prime, the continued Fraction
of the quadratic irrationality pv/3 has an unusually long period. It might be
interesting to make this more precise.” I began investigating the period length
of continued fractions of the form z+/3 and this paper is the result. For the sake
of simplicity I concentrated mainly on the case when z is prime, and I assume
p is a prime for remainder of this paper.

2 Continued Fractions

Definition 1. A simple continued fraction is an expression of the form

1
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withas € Z and a, € N forn > 1.

For the remainder of this paper the phrase continued fraction will repre-
sent simple continued fractions unless other wise stated. In order to represent
continued fractions in a more concise way we will use the following notation
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The expression for a continued fraction can be either finite (the expession stops
after some number of terms), or the expression can have an infinite number
of terms. This leads to the following theorem which will be presented without
proof.

Theorem 2.1. A number represented by continued fraction is rational iff the
continued fraction is finite.

2.1 Definitions

We make the following definintions to help construct the theory of continued
fractions. These theorems are presented without proof.

Definition 2. A convergent is e partial quotient of continued fraction. Let T}ﬂ”
represent the nth convergent.

!Corollary 1.4 states “Assume that p = 2/ — 1 {5 prime. Then the order B = Z + pZ+/3 of

the index p in Z + Z+/3 has class number 2 and fundamental unit 5 = ¢2' . The fact that
the class number is 2 will be very important later.



Theorem 2.2. Let %ﬂ‘— be the nth convergeni of a continued fraction and sup-

pose the convergents converge to [) then
4, Ay A . . .
£ 2 i34
B B B - -forms an increasing sequence less than D) and

A; A .
BB B - forms a decreasing sequence greater than D.

e

We also need to make sure that the idea of an infinite actually makes sense.
In other words if we define a sequence of convergents of an infinite continued
fraction, will the sequence converge. Lucky for us it will, the theorem is stated
without proof.

Theorem 2.3. All infinite continued fractions converge to some value in R.
This is a result of Theorem 2.2.

In this paper we will be more concerned with infinite continued fractions and
particularly with the continued fractions that representing quadratic irrationals,
that is numbers of the form £ i‘/ﬁ, where P, Q are integers and IJ is a nonsquare
positive number. The following important theorem is due to Lagrange.

Theorem 2.4. Any quadratic irrational has e continued fraction which is pe-
riodic after o certain number of terms.

The proof is stated in the next section.

2.2 Continued Fraction Algorithm

As of yet we have not yet defined a way to find the continyed fraction of a
given number. In this section we define such an algorithm and in the process

show that a simple continued fraction can be constructed uniquely for any real
number.

Algorithm 1. Let o be a real number. We construct our continued fraction as
follows. To begin let r=c.. Then follow these steps repeatedly:

1. set ay, equal to |r|, where |v| is the floor function of r
2. s=r-|r]
3 r=s!

This process stops if s = 0 and in this case the continued fraction is finite
and D is rational. For irrationel numbers this process continues indefinitely, but
may be periodic as noted in Theorem 2.4.

A simple exampie will illustrate this process. Lets find the continued fraction
representation of +/3. We begin using the Continued Fraction Algorithm to



compute the continued fraction of v/3

ro= V3 (1)
ag = |rj=1 {2)
5§ = T—{zj\/g—i (3}
ISR SR E "
r = s = EI1T 3 {4)
a = |r]=1 (3)
5 = TWET‘Jmﬁ;Z—Iz\/i—I (6)
o1 2 2VB+1)
ro= sle e =S =v3+1 (7)
ags = [TJKQ (8)
s = r—|r]=v3-1 (9)

Notice now that (9) is the exact same as (3). From this point forward the terms
of the continued fraction will just keep repeating. Thus
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Remark 1. The Continued fraction Algorithm can be thought of in terms of
groups in GLy(Z). Consider the matriz ( (f ) which represents .

g H

2. Multiply on the left by ( - ) This sends ( g ) to ( . )

3. At the end of each loop the resulting malriz is ( bie by >
bay oo

1 e b
1. Multiply on the left by ( L —lo] ) This gives ( o laaj )

The expression %ﬁf« i3 the nth convergent of the continued fraction. The

eTpression %ﬁ« is the (n-1jth convergent.

There is another algorithm that uses r=—s"" as the last step. This is equiv-

alent to SLo(Z) group action where the second matrix would be _01 (1] )
We can now use this to give a proof of Theorem 2.4, that a continued fraction
is periodic if and only if it represents a quadratic irrational
In Theorem 2.4 we stated that quadratic irrationals have a continued fraction
that is periodic after a certain point. This leads to the following definition.

Definition 3. The length of the period of o continued fraction is the number of
terms in each period of a periodic infinite continued fraction. It is only defined
when the number represented is o quadratic irrational,



For the remainder of this paper, whenever length is mentioned it is assumed
to be the length of the period of a continued fraction. We need to make sure
that the length is well-defined. We do that by showing that a number has only
a single representation as a continued fraction.

Definition 4. A quadratic irrational is called purely periodic if the point where
it staris to be periodic is the first term.

For example we saw that /3 = 1+ ﬁ-ﬁ;ﬁﬁ ... 50 +/3 is periodie, but not

1
pure periodic. Whereas v/3 — 1 = T TraT - - I8 pure periodic.

Definition 5. A quadratic irrational 8 is called reduced if § > 1 and —1 < 3 <
0. where 3 is the conjugate of 3.

Theorem 2.5. A gquadratic irrational is purely periodic iff it is reduced.
‘The proof is omitted. Refer to [Davenport] for a complete proof.

FProof of Theorem 2.4. Suppose that a continued fraction is periodic after a cer-

1
we get g back again. So @ b B = A After multiplyin
1 ¢ d 1 1 &

this out and remembering what the definitions mean we get ‘:j:f; = ”"15“ This
implies that ¢5° + (d —a)8 — b = 0. We know that 3 is irrational since having a,
pericdic continued fraction implies that the continued fraction is not finite, so
/3 must be a gquadratic irvational.

If 3 is a quadratic irrational, all that we need to complete the proof is show
that after enough steps using the Continued Fraction Algorithm we get a number
r,, that satisfies Theorem 2.5. This portion of the proof is also omitted and the

reader is again invited to read further in [Davenport].

tain number point. In terms of matrices this means that after acting on A )

O

Theorem 2.6. If two simple continued fractions represent the same number iff
each term in the continued fraction is equal. (This is not true if the continued
fractions are not simple.)

Proof. The if and only if part of this proof is clear. What we need to show for the
other direction is that there is only one unique way of expressing a real number
as a simple continued fraction. We will do this by showing that Algorithm 1 is
the unique algorithm to find a simple continued fraction.

Lets take a closer look at the algorithm. Notice that 0 < A-——... <1
where a; € N, so it is clear that in order for the algorithm to work*steps 1 and
2 are correct and unigque. So for instance after the first two sieps we have
r = |rl+s where 0 < s < 1 and we need someshing of the form r = [r]| +1/r;
so clearly v = &7 ! where 1 < r; s0o ir1] € M and step 3 is correct and unique.
This shows that this algorichm is the only way to get a simple continued fraction
and that the simple continued fraction for a number is unique. £



2.3 The Pell Equation

Definition 6. The Pell equation is an equation of the form z° — Dy? = 1 where
D is a pesitive-nonsquare integer greater than one.

Theorem 2.7. Every Pell equotion has an infinite number of solutions in the
niegers.

Froof. Pell’s equation is very closely related to continued fractions. Suppose we
have the equation #:* — Dy* = 1, it is easy to find the continued fraction of D
through the first period. Now using matrices as we defined earlier we have some

element in the group GL2(Z) such that ( ff 2 ) ( \/15 ) = ( \/1“‘5 ) This

means that "E“J@i% = @ or that av'D +b = e +dvD. Since v/D is irrational
we now have two equaitons, a = d and b = ¢D. Substituting this back into our
original matrix we get ( f C‘f ) This matrix is in ¢L5(Z) so its determinant
is +1, so d* ~ Dc® = £1. If it is T then we have constructed a solution (e, d)
to the Pell equation. If it is d* — Dc? = —~1 then (d — vDe)(d + VDe) = -1
now squaring both sides we get (d” + De? — 2cdvD)(d? + De? + 2edvD) = 1 so
(d*+De?)* - D(2cd)? = 1 thus (d? + De?, 2cd) is a solution to the Pell equation.

Now supposing we have a solution (21, y1) suck that o, # 0 and y; # 0, we
will show how to construct an infinite number of solutions.

if (z1, 1) is a solution this means

Tyt - Dyzz =1
(zy + \fﬁyi)(ml - \/Eyﬂ =1
(o1 + \fﬁyz)n(ﬂb‘x - \/ﬁyl)n =1

let {2y + \/Eyl)n = 1, + v Dy, then (%, ¥n) also solves the Pell equation and
{Tp,yn) is clearly distinet from (z1,y:). i

Here is an example of how we can use continued fractions to find solutions to
the Pell equation. Consider the equation % — 3y? = £1. We found earlier that
the continued fraction representation of v3 = 1+ Trarrras - Now let’s use
the G/'Ls action we defined earlier (Remark 1).

According to our algorithm we get

(o) )G a) G (e (G1)=(52)

Now the convergents we are interested in are in the top row, 1 and 2. This
implies the fundamental solution to the Pell equation 2?2 — 3% = +1 is x=2 and
y=1. which we can check: 2* — 3% 1% = 1. To find all other solutions we can
either use matrices or we can take powers of 2 + \/g



2.3.1 Considering the Pell Equation Modulo Four

By looking at the Pell equation modulo four we can determine something about
the nature of the solutions.

The Pell equation we are interested in is z° ~ 3p*y? = +£1 with p prime and
%,y integers. Now by taking everything modulo 4 we have
2 -3p%% = £ 1 {(mod4)

Theorem 2.8. The solutions of the equation z° — 3p?y? = £1 are of the form
z even and y odd, or z odd y even and ¥ — 3p*y® is never equal to -1.

Proof. Assuming p is an odd prime, we now have four cases depending on if x
and vy are even or odd.

CASE 1. If z and y are even then our equation z* — 3p%y® = £1 (mod 4}
simplifies to 0 — 0 = x1 (mod 4) which is a contradiction.

CASE 2. If v is even and y is odd our equation simplifies to 0—3 = £1 {mod 4)
or 1= +1 (mod 4).

CASE 3. Ifz1s odd and y is even our equation simplifies to 1 -0 = +1 (mod 4)
or 1 = +1 (mod 4).

CASE 4. If z and y are odd then we have 1 ~ 3 = +1 (mod 4) which is a
contradiction.

This shows that we have two possible cases, either x is even and y is odd
(CASE 2}, or y is even and x is odd (CASE 3). In both these cases the equation
is equal to 1, and never -1. O

2.3.2 The Parity of the Length of Continued Fractions of p\/3

In the last section we showed that the Pell equation 2% — 3p®y? is never equal
to -1 for the special case D = 3p?, this has ramifications on the parity of the
length of continued fractions representing +/3p°.

Theorem 2.9, The length of continued fractions representing numbers of the
form 3p® is always even.

Proof. We know there exists a matrix in GL2(Z) such that

(2)(7)=(7)

c d 1 1
Using a method similar to Theorem 2.3 we find that our matrix becomes

d 3pc
c d

and we know that the determinant of this matrix is +1 and it it’s determinant
is a solution to the equation d° ~ 3p°e?. But we know from the previous section



that the only possibility is +1. So the determinant of Z 2 ) s 1. Let look at

how this matrix is constructed. Remark 1 tells us that this matrix is a product

of matrices of the form
0 1 1 —|a)
1 0 0 1

and we have a pair of these matrices for each element in the period of the
continued fraction. Now the determinant of this each individual pair of matrices

; . by .
is -1 and the determinant of there product, the matrix Z g s 1, so this

implies there must be an even number of element is the period of the continued
fraction, so the length must be even. I

2.4 Units

Definition 7. A real guadratic ring is Z1vVD] with D > 0 and D nONSGUGTE,
This 1s the ring of algebraic integers when D =2 or 3 (mod 4)

Definition 8. The Norm of an element a+bv/D in ZVD] is o? — Db°.

Definition 9. A unit in a real quadratic field is an element o such that Norm{a)
= 41,

Notice that if (x,y} is any solution to the Pell equation 2% — Dy? = %1 then

z + yvD is a unit in Qv D).

Definition 10. A fundamental unit of a real quadratic field is an element 7)
such that all other units in the field can be formed as powers of 1.

Theorem 2.10. In the ring Z[vV/D] where D >0 and D= 2 or 8 (mod 4} the
fundamental unit is x4y D where (z,y) is the first solution te the Pell equation
z? — Dy* = 1. Where by first solution it is meant the solution first found by the
continued fraction method,

2.4.1 Finding the Fundamental Unit in Z{\/:g]

The fundamental unit of the ring Z[v/3] will be very important to later calcula-
tions and this calculation also shows a concrete example of continued fractions,
Pell's equation and units.

Theorem 2.11. The fundamental unit in Zv/3] is 2 + /3.

Proof. We calculated earlier that

1 1 1 1

and we used that knowledge to find a solution to the Pell Equation z% — 32 = 1,
namely 2 + /3, thus the fundamental unit of Z[V3]is 2 4+ /3. O



3 Binary Quadratic Forms

Definition 11. A binary quadratic form is an ezpression az® + by + cy? with
a,b,c € £. To save space we also wrile {a,b,c).

The theory of quadratic froms revolves around the question of which numbers
can be represented by a quadratic form.

Definition 12. Two binary quadratic forms az® +bzy+ey® and o'a* + by +c'y?
are equivalent if there is a transformation © = pX + qY, y = rX + 5Y with ps-
qr = x1 such that a(pX + qV)? + b(pX + qY)(rX + 5Y) + ¢(rX + s¥)? =
o/ X2+ VXY + 'Y?. We express this as {a,b,c) ~ (a’,b,c’).

Remark 2. Note also that the matriz ( f g ) is in GLo(Z).

Theorem 3.1. ~ forms an equivalence relation.

Proof. Let x,y,z € Q We need to show three things.

1. That x ~ x for any quadratic form x. This is trivial since the identity
matrix is in G Ly (Z).

2. Ifx ~ytheny ~ x. If x ~ y this means there is a element in GLy(%)
that transforms x into y. Since GL: (%) is a group, the inverse of this element
is also in GLy(Z) and it transforms y back to x so v ~ x.

3. If x ~ y and y ~ z then x ~ z. Again this just follows from the nature of
GLy(Z). Since x ~ y and y ~ z this implies there are two elements in G L (Z)
that send x to y and y to z respectively. The composition of these two operations
which is just their product in GL2{Z) (Which is also in GL2{Z)) will send x to
Z, 80 X ~ Z.

These three criterion show that ~ is an equivalence relation. I

Since we have an equivlance relation, it now makes sense to split quadratic
forms into equivalence classes bases on the following definition.

Definition 13. The equivalence class of a given gquadratic form z: C, = {y €
Q such thal y ~ x}.
3.1 Discriminant

Definition 14. The discriminant D of the binary quadratic form ax? +bry+cy”
is defined as b* — dac.

Corollary 1. Consider the discriminant modulo 4.
D =b —4dac (mod 4)
D=b (mod 4)
D=0o0rl (mod 4)depending on if b is even or odd respectively

So the Discriminant must be congruent to 0 or 1 modulo 4 and is never congru-
ent to 2 or 3. Alse D =5 (mod 4).



Corollary 2. The discriminants of two equivalent quadratic forms are equal.
- . 9 9 a b/?
Proof. We can express the quadratic form az? + bry + cy? as b2 e )

Suppose (a’.b".¢’) ~ (a.b,c) then this implies there is a matrix ( f g ) in
GLo(Z) such that

(b’a/fz b’c/'z)x(f g)(b?? b?)(? g)_l

Since ( 1: g ) is in GL2(7) this implies that

e b2 | e b2
Lv2 | T b2 e
12 "
Which implies that a'¢' — (54) = ae— E;; which implies that the discriminants
of equivalent forms are equal. i

3.2 Reduced Forms

Definition 15. A quadratic form ax®+bry-+cy® is called definite if it’s discrim-
inant is less than 0. If it’s discriminant is greater than 0 it is called indefinite.
When the discriminant is 0 it is called the degenerate case.

This paper is concerned with quadratic forms whose determinants are 12p°.
This is always a positive nurnber, and hence all such forms are indefinite forms.

Definition 16. An indefinite quadratic form az® + bxy + cy? is called reduced

if0<b< VD and —b+VD < 20 < b++/D, where D is the discriminant of
the quadratic form.

There is also another notion of reduced where a is replaced by |al. The rela-
tionship between these two notions is similar to the comments after Remark 1.
The way we defined it is called Gls-equivalence, whereas using |a| is called
S La-equivalence.

Algorithm 2. In order to prove that a binary quadratic form has a reduced
form we use an algorithm to find that reduced form. (INCORRECT)

1. If (a,b,c) is not veduced then choose § such that /D — 2le| < —b + 2¢8 <
VD.

2. We have (a.b,c) ~ {c, =b+ 2¢8,a ~ b6 + ¢6?)
3. 4f la — b8 + ¢82] < e} then repeat the process.
This is a finite process and for any quadratic form will always give an equivialent

reduced form.

10



Corollary 3. Each quadratic form has a reduced form.

Theorem 3.2. The number of reduced forms of a given diseriminant is always
finite.

Proof. The conditions that D = 5% — dac and 0 < b < /D is very restrictive.
This limits the possibilities for b to a finite number and there are also only a
finite number of ways to factor D —? into —4aec. This implies that the number
of reduced forms for each D is also finite. i

3.2.1 Primitive Reduced Forms

Definition 17. A binary quadratic form az® + bxy + cy? is called primitive if
a,b and ¢ have no commen factor.

Which quadratic forms with Discriminant equal to 12p® with p prime are
not primitive?

Theorem 3.3. if D = 12p” then all the reduced forms of D are primitive ezcept
2.

We'll first need 2 lemma to prove this.

Lemma 1. The only reduced forms of quadratic forms with discriminant 12 are
(1,2,-2) and (2,2,-1).

Proof. We know 12 = D = b* — 4dac, this implies that 4 divides »2 or that
2 divides b. Since {ab.c) i3 a reduced quadratic form this also means that
0 < b <D =+12, 50 bmust be 2. Now 12 = 4 — 4ace, this reduces to —2 = ac,
since we also know —2 + /12 < 2a < 2 + /12 which means a is 1 or 2, this
implies that ¢ is —2 or —1 respectably, so (1,2,-2), (2,2,-1) are the only reduced
forms of discriminant 12. 1

Proof. Theorem 3.3 Let 12p* = D = b* — dac, if g = GCD(a,b,c) then g2
divides 12p?. H g is greater than 1, this implies either g=2 or g=p or g=12p
since p is prime. Lets consider the three cases.

CASE 1. g=2

Lets factor g out. 3p° = D' = (g)z — 4(%) (£} Corollary 1 showed D’
is alwaeys congruent to 0 or 1 module 4 so this implies that in this case p=2.
Since p=2 we get D’'=12 which has reduced quadratic forms (1,2,-2) and (2,2,-
1) from the lemma, so our original discriminant D = 12p° or D=48 has onliy
the nonprimitive reduced form (2,4,-4) and (4,4,-2) or, written another way.
(p.2p,-2p) (2p,2p,-p).

CASE 2. g=p

2
Lets factor p out. D' = (%) -4 (%) (%) = 12. So agein we have the
case D’=12. So D = 12p° has the nonprimitive reduced forms {p,8p,-2p) and

(gp,Qp-p}

11



CASE 3. g=2p )
Lets factor 2p out. D' = (—b—) -4 (i) (L) = 3. Here we have the case

Zp 2p 2p
that D’=3, but this is a contradiction since D' =0 or 1 {mod 4).

So there are only four non-primitive equivalence classes reduced forms with
discriminant 12p*, namely (p,2p,-2p} and {2p,2p,-p). |

These examples also show an interesting property of reduced forms, It ap-
pears for any reduced form (a,b,c) then (-¢,b,-a) is also a reduced form. This
fact is stated in the following theorem.

Theorem 3.4. If a quadratic form (a,b,c) with discriminant D = 12p° is re-
duced then there is another distinct reduced form associated with it, namely

{-c,b,-a).

Proof. First we want to show that that (-a,b,-¢) is also a reduced form, then we
need to show that it is also distinct from (a,b.c).

Clearly this quadratic form still has discriminant D, since D — b = —4q¢
this implies (VD — B)(VD + b) = —4ac. Since 0 < b < /D this implies that
—dae is positive and since a is positive (0 < VD — b < 2a) its clear ¢ must be
negative. So (VD — b){(v/D + b) = (20){2(~c¢)). Since v ~ b < 2a < VD + b
this implies that VD — b < 2{—¢) < v/D + b. This implies that (-c.ba) is a
reduced form.

In order to check the that the forms are all distinet we need to show that
a# —c. If a = -c then ¥” + 4a” = D = 12p®. This implies (£)? + o = 3p? So
3p? is the sum of two squares, but an integer with a power of 3 in it’s square
free part can never be a sum of two squares which implies a # —¢, completing
the proof. ]

Corollary 4. This theorem yields the obvious corollary: The number of reduced
forms of a given discriminant of the form 12p* is always divisible by 2.

4 The Class Number
4.1 What is the Class Number?

Definition 18. For the purposes of our dicussion we define the class number
h{D) to be the number of equivalence classes of primitive binary quadratic forms
of a given discriminant D. Since each quadratic form is equivalent to a reduced
form we can look at the number of equivalence classes of reduded forms.

Corollary 5. The Class number of a given discriminant is always finite.

Proof. Theorem 3.2 states the there are only a finite number of reduced forms
of any discriminant. It immediately follows that the class number of any dis-
criminant is finite. Il

12



4.2 The Underlying Structure

The structure of real quadratic fields is much more complex and beautiful than
that of imaginary quadratic fields. In imaginary quadratic fields each reduced
form is in its own equivalence class {with & couple of exceptions), but in real
quadratic flelds this is not true. Instead the reduced forms form cycles, and the
class number is the number of such cycles. First a couple of definitions

Definition 19. Two reduced forms {(a,b,¢) and (—c, ¥, ¢") are called adjacent
ifb+b =0 (mod 2(—c)).

Theorem 4.1. For any reduced form [ there is always exactly one adjocent
reduced form distinct from 3 on either side.

Proof. The method of cycling between reduced forms is very similar to the
continued fraction algorithm (Algorithm 1). Starting from our reduced form
ax” + by + cy” we set it equal to 0 and perform the substitution z = 2 /y to get
az? +bz+ec. :—f’—“g%‘@: is a solution to this equation, where D = b —4ac, and will
represent the reduced form. Now we perform the continued fraction algorithm
on this number by first inverting it

(-b+x/b")1 %  ~b-D

2a ~ VD “b-vD
_(-20)b+vD) b+VD
TOB — (B2~ dac) | —2c

and then subtracting it by its floer F € Z,F = L%J
b+vVD poW+VD
—2¢ T

Now we can see that we have completely determined the first two spots i
our new reduced form namely (¢, ¥, #) and that

b+VD b +VD
~2¢ -2

F

which implies %% € Zso b+t =0 (mod 2{—¢)}. ¢ is now also determined

since ¢ = Qi“z(fii This is always an integer since D =4 —~ dacand b+ b = 0
(mod 2(—¢)) implies D — {#')? = 6 (mod 4¢).

Finally we need to show that {—c, ¥, ¢’) is actually a reduced form. We know
0< 73(:‘55 < 1 which implies 0 < —¥ + VD < 2(—c)and ¥ < v/D. So we still
need to show that 0 < b and 2(—¢) < ¥ + sqrtI777.

Finally the uniqueness assertion, suppose that we had (a,b, ¢) and (~¢, e, e},
is there another choice for 4’7 If there were it would have o be at least 2|¢|

more or less than our cholce from the algorithm. This means that “ggfgﬁ >1

13



which implies —b" + /D > 2(~e). Or that =522 < 0 which would imply

that VD < V. Both of these options contradict the requirements for reduced
forms, thus we only have one possibility for ' and thus ¢ is also fixed by D).
This completes the proof of the theorem for one side, the other direetion is
similar. O

Theorem 4.2. Reduced forms in real guadratic fields can be partitioned inte
eyeles.

Proof. Pick a reduced form, the next in the cycle is simply the next adjacent
reduced form. Since there are only a finite number of reduced forms eventually
come back to the original reduced form and have formed a cycle. If there is a
reduced forms we haven’t used yet then continued the process for ancther cycle
with this reduced form, otherwise we are done. ]

Corollary 6. If D = 12p® the two nonprimitive reduced forms, (p,2p, —2p) and
(2p. 2p, —p}, form there own cycles.

Proof. Clearly they are both adjacent to each other since p and 2p | (2p+2p) =
b+ b We write this as (p,2p, —2p) ~ (2p, 2p, ~p) ~ (p, 2p, —2p). 0

A couple examples of the cycle structure will also be elucidating. First con-
sider D = 12. We already found that there are only two reduced forms namely
(1,2,-2) and (2,2,~1). By Theorem 4.1 we see that (1,2, —2) is adjacent to
(2,2, ~1) which is again adjacent to (1,2, ~2) so we have a 2-cycle.

Now for a more complicated case, consider D = 300 == 12(5)? Using an imple-
mentation of Algorithm 4 we find there are 10 reduced forms, (6,6,-11), (11,6,-6),
(5,10,-10), (10,10,-5), (3,12,-13), (13,12,-3), (2,14,-13), (13,14,-2), (1,16.-11) and
(11,16,-1). Firstly we can take out the nonprimitive reduced forms which form
their own 2-cycle as in Corollary 6.

Now lets pick an element, for example (6,6,-11). The next reduced form in
the cycle must begin with an 11 so we have two choices, but only (11,16,-1)
gives the condition that 6 + 16 = 0 (mod 2(11}). (1,16,-11) and (11,6,-6) then
clearly follow. At this point we are again back to our original choice so we have
a 4-cycle.

We still have four reduced forms left, consider (13,12,-3). (3,12,-13) is clearly
adjacent to it, but then we have two choices which begin with 13, but only one
satisfies the second condition, namely {13,14,-2) followed by (2,14,-13) which
brings us back to our first choice. So we have a 4-cycle. Since there are no more
reduced forms left to choose from we are done.

So we have 3 cycles, a nonprimiiive 2-cycle

(5,10,-10)~(10,10,-5))~(5,10,-10) and two 4-cycles

(6,6,-11)~(11,16,-1)~ (1,16 -11}~(11,6,-6)~(6.6 -1 1) and

(13,12,-3)~(3,12,-13)~(13,14,-2)~(2,14,-13)~(13,12,-3)
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4.3 Calculating the Class Number

Let B = Z + Z+/3 and let 5 = 2 + /3 which is the fundamental unit in this

ring. Assume p > 3 then A(12p%) = h(12)i’§: %‘; )) where ¢ is the Euler Totient

function over a specilic ring defined by ® g(p) = |[{R/pR)*|, and i is the smallest
integer such that #* € Z + pZ+/3. Since p is prime we know that Pz(p) =p—1,
in order to calculate @p(p) we need to mvestigate if 3 splits over Z+/3. If p
does not, split then ®g(p) = p* — 1, if p does split then ®p{p) = (p~ 1)2. It is
fairly easy to calculate the h(12) and how p splits over Z+/3. Calculating i is
considerably more difficult, but an effective algorithm exists for calculating it
using a computer.

4.3.1 What is A(12)?

This question is most easily answered using quadratic reduced forms. As an
example in Subsection 4.2 we found cut that the reduced forms of discriminant
12 form a single cycle {1,2,-2)~(2,2,-1}~(1,2,-2). Thus by definition of the class
number h{12} = 1.

4.3.2 How does /3 split over different fields?

In order to determine the class number we need to determine over what fields 7,
the +/3 splits into different factors. This is equivalent to asking over what if 3 is
a square over different fields. We can calcuate this using quadratic reciprocity.

B)- @)

Now we have a couple of possibilities. Since p is prime, p = 1.5,7 or 11

{mod 12)
B =)

IFp=1 {mod12)
80 3 is a square.

Fp=5 (mod 12)

50 3 is not & square.

By =)=
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s0 3 is not a square.

()= --)-

s0 3 is a square.

Ifp=11 (mod 12)

This calculation show that +/3 splits in the field LZpiff p=1or 11 (mod 12).
Now using we state the class number formula in its full simplicity

- G rip)
h(12p%) = R(12)-
(126%) = h(12) =
=p;__1ifp510r11 (mod 12)
p+1

= ———ifpz=jor7 (mod12)
2
Since h(z)} is always a positive integer this leads to the following corollary

Corollary 7. i divides p~ 1 if p = 1 or 11 (mod 12) and i divides p + 1 if
p=5orT (mod 12).

Now that we understand how to calculate the class number using this method
lets do a quick example. In Subsection 4.2 we found that for D = 300 = 12(5)2
there are two non-primitive cycles so the class number h(300)=2. Now lets iry

the other method. 121t 1
h(12p*) —M )gp )

Now p=35, h{12) =1 and p = 5 (mod 12) so we have

9 +1,
h{12p™) = p%/ § = —?

Now we need to calculate i. Recall i is the smallest integer such that
(2+V3) € Z+pV3Z =7 +5V3E

Clearly i # 1 s0 by Corollary 74 = 23 or 6. (24 v3)? = 7T+ 4y3 ¢ Z+ 532

{2+ V3) = 26+ 15v/3 € Z + 5v/3% 50 i = 3, thus h(300) = 2.

5 Bounds on the Length of Continued Fractions

5.1 An Upper Bound on the Period of our Continued
Fraction

If D is quadratic irrational let p(D) denote the length of its period. In [pacific
journal] it is shown that p(D)) < %%Eg%l where 7 = mm"&}l/—w—b— is the fundamental
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unit in ZvD, a = Lﬁﬁ,and;tzBif2{uo or = 1if 2| up. Now to apply
this to ) = 12p® in the order Z + pv/37%. We get 7 = ﬁ%_‘/_gt and p = 1 {See
section 4.3 for an explanation of i. Now applving the theorem we find that

. e [oan® o - ; .
p(12p%) = P = 200 We know h(12p%) = EEL so p(12p?) = _hgg;z);gg-g.

Thus p(12p?) is approximately bounded by p/h.

5.2 A Lower Bound

Some notation:

1=2+V3, y=(1+V5)/2

Let £ be a prime greater then 3. Let {ag = [£/3],a1,az,...} be the elements
of the continued fraction of £v/3 as in Definition 1, and define

{ P = QpPr—1 + Pr-2
Gk = Q-1 + gr—2.

In particular, if  is the period of the said continued fraction, then
e = Pp-1+ f\/ﬁflp—l

is the fundamental unit in the order of discriminant 12#%2. Recall that the class
number of that order is given by

h(€) = (££ 1)/old),

where o(€) is the integer such that ny = n°,
‘We shall now relate the period p with the class number. We need the fol-
lowing theorem:

Theorem 5.1. (Liouville) There ezists a positive real number ¢ such that for
every pair of integers n and ¢ > 0,

Vi-Li> S
q q

Now let ag = [fv/3],a1,as,... be the elements of the continued fraction of
63, Let pp/qs be the corresponding convergents, defined above. Then it is
well known ([K; page 36]) that

i 1
TV I
gk k14

After dividing both sides by ¢ we arrive to
T £
V3 - Pr v o S
| b~ agsr(gnt)?

It follows that £/a; must be bigger then the costant ¢ in the theorem. In fact
this can be made explict, and it follows that a; < 4£. By replacing o by 1 and
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4¢, in the defining requations for py and gz, we can obtain a lower and upper
bound on 1y, respectively:
af < gy < (46)F

Taking log of all three terms, and dividing by log(n) it follows that
log(a)

log(4p)
Piogm) = 4 = Plogy)

and
(£ Dlogly (1) log(n)
R{t}logdp) — " = h{f)logla)

6 Algorithms and Experimental Results

This section explains the algorithins [ used to calewlate different resulis like the
continued fraction of pv/3, the Class nurmber, or the number of reduced forms
of a given discriminant. These results, especially those for contimued fraction
helped me to see interesting patterns that led me to study this topic more in-
depth.

6.1 Length of Continued Fraction Period

As referenced in the introduction, I began looking into this topic after a reading
a paper by Benedict H. Gross concerning the relative length of a continued
fraction of the type pv/3 where p is a Mersenne prime. In order to be able to
quantify and understand what this really means I saw that it was necessary
to understand the length of continued fractions for other values for p. Since I
have already explained the method for finding the continued fraction of a given
number in Algorithm 1. I will go straight to the Results. n is integer, n prime,
n congruent to mod 24

6.2 The Class Number
Algorithm 3. Recoll the method from Subsection {.3.

R(12)(p =+ 1)

h{12p*) =

In Subsection 4.5.1 we found that h(12) = 1, and to determine the sign we need
to know if 3 splits in F,. It was shown in Subsection 4.3.2 that if p= 1 or 11
(mod 12) then 3 splits, otherwise it doesn’t,

let q=p-1if p=1 or 11 (mod 12} otherwise let g=p-+1.

Now we need to calculate i which is defined to be the smallest inieger such
that (2 + v/3)' € Z + plv/3. In Corollary 7 we saw that i I q, calculate the
factors of q and test each, starting with the smallest factor bigger than 1. and
see if the factor satisfies the property required for i. This number can get very
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large very quickly requiring very large precision. It is often effective to perform
the operations needed modulo p and check thot the solution is 0.

Onee i is found then hip) = q /i
6.3 Calculating the Number of Reduced Forms

Algorithm 4. We have already given a way to find the reduced form of any
gwen binary quadratic form (Algorithm 2). This algorithm computes the number
of reduced forms of a given discrimant. It is specificolly for D = 12p°, but can
easily be adjusted.

1. Fiz the Discriminant D
letr=10
let b=10 (since 12p* = D =0 (mod 4))

let s = (D — b*)/4 (This is always a positive integer)

S S

Consider all the factors of s. Let vy, be the number of positive factors a
such that —b+ vD < 2a < b+ VD Because of Theorem 3.4, we can
actually just consider the number of positive factors less than VD and
them multiply this number by two.

6. letr=71-4ry

7. let b= b+ 2 {Recall from Corollary 1 that D = b* (mod 4))

S

if b < /D repeat the process.

ris the total number of reduced forms of a given discriminant D = 12p° In
order to get the number of primitive reduced forms we need to subtract by fwo
because of Theorem 3.3. It olso was shown in Thecrem 5.2 that this number is

always finite, the fuct that this is a finite algorithm is basically the reason this
guantity is finite.
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