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The first thing I did in this research project was skim through actual papers, given
to me by Professor Enescu, that treated the topic of jet scheme computation on which the
project was based. Although I found it very difficult to follow much of the complicated
math that was involved, I was exposed to the main ideas and general concepts thus
orienting me to the source of the subject matter. After going through this reading
material I started building on my novice familiarity with abstract algebra to develop a
sufficient background in commutative algebra and algebraic geometry in order to
understand the concepts involved in the computation of jet schemes. Professor Enescu

helped me find appropriate text books that treated the subject at a pace suited for my level

of understanding. The two main books L used were Commutiative Algebra for

Undergraduates by Miles Reid and Introduction to Commutative Algebra by Atiyah and

MacDonald.

Twice a week Professor Enescu and [ met for two hours and each time T was
given a reading assignment and exercises pertaining to it from the above-mentioned
books to have ready for the following meeting. The main concepts that were
concentrated on were the fundamental concepts of prime ideals, maximal ideals, radicals,
nilpotent elements, irreducibility, etc. The study of these concepts was aimed at
understanding the Zariski topology and also how to interpret varieties, or schemes, in
terms associated with ring theory. This was essential because the research project refers
to the notion of the irreducibility of varieties which is closely related to the concept of
prime ideals.

As [ worked with this material in the text books I gained the mathematical tools

necessary for working with the notion of a jet scheme associated with a hypersurface



which will be defined and explored in continuation. A variety (or a scheme) is given by a
set of polynomial equations f}, . . ., fm €[x1,. ., Xa] by looking at the set of common
zeros Z(5, .. L fm) = (%0, - LX) [ A& . Lxa) = T h(X, %) =00 © c".
For example Z(x*-y%) = {(%y) | x*=y*} = {(x,y) | x= *y}, which is the union of two
lines: y= -x and y = x (as a subset of cH.
These varieties (or schemes) can be studied using ring theory. To each variety

Z(fi, . . ., fu), one can associate the coordinating ring of functions

Clxy, .. ., %a}/(f1, . . . f), where (i, .. fm) is the ideal generated by the polynomials
fy, .. s This allows the in-depth understanding of the properties of a given variety.
For example, for f=x, V(x) = {0} < C. Inthis example the ring of functions is C[x}/(x)
which is isomorphic to C which is a field. But now consider the equation f= x5 V(%) =
{0} < C. This time the ring of functions is C[x}/(x*) which is not a field. Each ring
R=C[xy, ..., %)/(F, . . . fu) has a spectrum Spec(R). On Spec(R) one has the Zariski
topology where the closed sets are V(I) = {1 — p | p is prime} and I is an ideal in R, This
topology has a counterpart on Z(fy, . . ., fim) < C" where the closed sets are of the form
Z(Mand 1 < Clxy, ..., % J/(fi, . .. f). Forexample take R = CIxyHEE-y).
Z(z*-y") = {(x,y} | =y}l c . The closed sets on {(x,y) | x> = y3} are sets of the form
Z(1) with T ¢ C[x,y}(x2 —y3). For example, [ = (x,y)/(x2 ~y) will give a closed set,
namely Z(x,y} = {{0,0)}.

As an additional example take R = C[x,y]. In this case C?is a variety. A couple

examples of closed sets in C? are the following: Z(I) and [; ¢ C[x,y] where I; = (x -y}, Iz
= (x~y9), Js = (<%, xy), [y = (X" — y* = 1). The graphs of the polynomial expressions of

these ideals (e.g. lines, parabolas, hyperbolas, etc.) are examples of the basic building



blocks of algebraic geometry. Studying these closed sets 1s the same as studying the
Zariski topology on the spectrum of a ring. In fact, there exists a one-to-one
correspondence between them. This one-to-one correspondence reverses inclusion. For
example, usually maximal ideals correspond to the largest subset that is not contained in
any subset except for the whole set. But in this case maximal ideals correspond to
individual points ~ the smallest things in thé set. And similarly prime ideals, which are
usually thought of as smaller subsets than maximal ideals, correspond to objects larger
than the points to which maximal ideals correspond in this peculiar point of view.

The principle focus of this research project was to find a method of computation
for the jet schemes of a given polynomial (with isolated singularities), without having to
going through the lengthy step-by-step computation which will now be outlined. Let
£=f{x01, . . ., Xon) = 0 be a hypersurface in C*. For f{Xo,1,X02) = Xo,i - (xo2)%, Df =
OtfExg, - X131 + OO0z - X12 = O0%0,1'Dxoy + Of/oxg 2 D%z = 1x1) - 2'X0.27%3,2 where
D(xi;)= X;s1; . D is an operator that behaves like a derivation i.e. it obeys the product rule.
For example D(xz,1°%1.1} = D(x2.1)x1,1 + X2, D{X11) = X, rXp1 + X2,1%2,1.

Definition: If f=f(xo:, . . ., Xon), then
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Inductively DX(f) = D(D(H)) and D™ (f) = D(D™(D)):
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The first three jets are as follows:

0% jet: X = Z(f) = {fixo1, .. ., %ow) =0} < C"; (X1, - . -, Xon)
et Xo = {fxos, . . -, Xem) = 0; D) = 0 <> Ti108x0,x1;= 0} < C=C"
{X01, - - - > Xom, X013, - s X1n)



2% jet: Xz = {f= 0; D(F) = 0; D) = 0} < CxC™<C" ( Se previous page Jor 0°F))

(Xo1, - - - » X0, XL, - -, Xinm X2, - s X2.n)

Thus the 0™ jet, Z(f) = 0, corresponds to the original hypersurface and the 1% jet
corresponds to the tangent space {(x,y) | x in Z(f), y in tangent plane at X} at the
hypersurface, etc.

To arrive at the goal of a direct computation for the n' jet it is noted that f has
rational singularities if for all m the jet schemes X, are irreducible. Remember that a
topological space is irreducible if it cannot be written as a nontrivial union of two closed
sets. Paraphrasing Mustata’s Theorem, if an object is not made of one piece, then the
hypersurface f will have “bad” singularities. So the goal of this project boils down to the
question of when Xy, is irreducible. The method employed to accomplish this 1s looking
at the ideal (f, D(f), D), ..., D) = Pa. Now Z(Py) = Xin. Xm is irreducible < Py
is prime. Hence another important question: When is Py, prime?

The plan involves understanding these equations f, D(f), . .., D"(f) so that it can
be established whether Py, is prime or not. To obtain a general description of the jet
equations f, D(f), D*(f), . . . the first step is to figure out the one variable case fix,"). In
this case the jet equation can be computed directly from the coefficients of the original
polynomial, Tt follows a recurrence relation as follows:

First it should be noted that while the polynomial representing the hypersurface
can have any number of variables in it, here only a polynomial with one variable will be
treated and those polynomials with more than one variable will follow similarly. So let

f(x) be an arbitrary polynomial in a single variable. Note that D(xi}= xi+;. When more



than one variable is used, the different variables are distinguished by a varying subscript,

ie f(x;,Xz, ..., %) or f{Xo,, . . ., Xo.) where in the calculation ¢/ dxp; = %1 and

&1/ &x11 = a1 and so forth since D(x;;)= xi+1; as mentioned above. In this one variable

case the subscript will be omitted. If an exponent were to be used then the variable

would be surrounded by parentheses. The first through the sixth jet schemes are listed
here:

D fx;

D* fxy+ £2 %y

D foxa + 2 - (2xxg + Xpx3) + £ - Gyxix1)

= x3 + 3 F2 - (x%)) + 2 (x1)°

D* fixg + 2 (3xaxs + 3xoxp + x3%3) + 3 - Bxixyxg + 2x%0%; + Koxaxa) +

9 (xxxaixy)
= foxy + £2 - (dxyxs + 3xaxg) + - (Bxaxixg) + £ (xp) !

D% foxs + £ - (4% + 6x2%3 + 4%3%X2 + xaxp) T £ (6x1%1%3 + 8x3X2X2 + 3X1XaXy
+AxyX Xy + 3xzXgX) + X3 Xy ) £4. (dpxixiXe + 3xixpxexy + 2X:XeX1X)
txaxixyxy) + 177 (axpxaxixy)

= flxs + 2+ (5xy%4 + 10x5%3) + 3 (10xx%3 + 15x%%) + 9. (10xx1x1%2)
9 ()

DS foxg + (- (5x1xs + 10xx4 + 10x3x3 + 5x43%p + X5X) + 3. (10x;x1%4 +
20x%%3 + 15%xa%z + 4xyxaxy + 10xaxx3 + 15%a%0%; + 0x0x3%; + 5X3X1X2
+ 4x3X7X) F XaXiXp )+ e (10x1x1x%3 + 15X x1%2X2 + OX3x1 3% +
10X X2X1Xs + 8%1X2%0X; + 3Xpaxi¥1 + 5xaxixpXa + 4xaXixaxy + 3xaxzxiXi

5
+ X3X§){1X]) + 9. (Sx1x1x3X1X2 T Aaxixixexg + 3 KX Xy



&
2K XX X Xy F XX XXy + . (X% X1%1X1X1)

= Poxe + 12 (6315 + 15%axa + 10x3x3) + £ - (15%3x1%4 +60x1%0%3 + 15%Xa%2%2) + 4.

(20xyx1%1%3 + 45%1X1%0%2) + £ - (15xy%)x1%1%2) + £9 - (x1) 6

We want to be able to predict the coefficients of the jet schemes. Definition:
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