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Abstract

The SEIR model, which is used by epidemiologists, requires knowing the values of multiple coeffi-
cients in order to correctly model the disease they are studying. The forward problem when using
this model is to determine the spread of an epidemic over time. The goal of this research is to
study the inverse problem and recover one of the coefficients in the SEIR model when applied to
multiple populations.

1 Introduction

One of the models used in epidemiology is the SEIR model. The model is applied to diseases that
people can be exposed to but not infected and cannot be infected after recovering. The name of
the model refers to the four groups that the model accounts for: Susceptible, Exposed, Infected,
Recovered. The people move through the groups as follows:

S
βI
−→ E

α
−→ I

γ
−→ R

The standard one population formulas for this model are:

dS

dt
= −βSI

dE

dt
= βSI − αE

dI

dt
= αE − γI

dR

dt
= γI,

with the restriction: S + E + I + R = 1.

In this model, 1

β is the exposure rate, 1

α is the infection rate, and 1

γ is the recovery rate. This same
model can be expanded to multiple populations. Normally epidemiologists use these equations to
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solve for the final infected population when they have the values for the coefficients for the disease.
The model used in the research will be heavily simplified from the standard model for heterogeneous
populations. It is assumed that there is no birth or death and therefore the population is constant.
It is also assumed that all populations are suffering from the same infection so that the coefficients
representing the recovery rate and the latency period before infection are equal in all populations.
The populations interact with each other with different frequencies and therefore the contact rates
between the populations are different. The equations for a heterogeneous population as suggested
by [1] after setting µ to 0 are:

λi =

n∑

j=1

βijIi,

dSi

dt
= −λiSi

dEi

dt
= λiSi − αEi

dIi

dt
= αEi − γIi,

where γ and α hold the same properties as above. i represents the population for each of the n

populations. The value of what was formerly β is now dependent on all the surrounding populations.
The equation dR

dt = γI; is excluded because it is dependent on I and can be calculated given the value
of I. This research is to determine if the exposure rates between the populations can be recovered
given a set of data about an epidemic. The goal is to recover all βij ’s given S0, E0, I0, ST , ET , and
IT in two and three populations. Section 2 will discuss the computations required to recover the
βij and the setup used. Section 3 will discuss the results found by estimating the calculations. The
final section will talk about future work to be done on this problem.

2 Computation

In order to recover β, the equation J(β) = ‖F (β) − F (β̃)‖2
2 needs to be minimized. β represents

the beta that is guessed to be the actual value and β̃ represents the value of beta given from the
data. The formula for the gradient is:

< δβ,Dβf(x, β)y >=

n∑

i,j=1

δβij

where y is the adjoint given by the formula:

{
ẏ = −Dxf(x, β) − r(t)
y(T ) = 0.

r(t) represents the difference between the model and the data.
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2.1 Two populations

In the two population model, the formulas for each of the groups is:

dS1

dt
= −S1(β11I1 + β12I2)

dS2

dt
= −S2(β21I1 + β22I2)

dE1

dt
= S1(β11I1 + β12I2) − αE1

dE2

dt
= S2(β21I1 + β22I2) − αE2

dI1

dt
= αE1 − γI1,

dI2

dt
= αE2 − γI2.

The matrix to simulate the different values of βij between the populations has the formula:

β =

[
β β2

βr β2r
2

]

with r ≈ 0.13300190127129.

β̃ = .166 was randomly generated to act as the actual data value for the computer simulation.
The values of α and γ were fixed at .11 and .12 respectively. The populations were fixed with the
following initial values:

S1(0) = .95 I1(0) = .05 E1(0) = 0 R1(0) = 0

S2(0) = .75 I2(0) = .25 E2(0) = 0 R2(0) = 0.

In the two population model, the ∂F
∂β computation produces the following matrix:

∂F

∂β
=




−S1I1δβ11 −S1I2δβ12 0 0
S1I1δβ11 S1I2δβ12 0 0

0 0 0 0
0 0 −S2I1δβ21 −S2I2δβ22

0 0 S2I1δβ21 S2I2δβ22

0 0 0 0




.

The Gâteaux derivative is calculated to determine which direction to take the gradient in using the
formula:

Dβf(x, β) = δβ11

∫ T

0

(−S1I1y1 + S1I1y2) + δβ12

∫ T

0

(−S1I2y1 + S1I2y2)

+δβ21

∫ T

0

(−S2I1y4 + S2I1y5) + δβ22

∫ T

0

(−S2I2y4 + S2I2y5).
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2.2 Three Populations

In three populations, the matrix to simulate the different values of βij between the populations has
the formula:

β =




β β2 β2/3

βr β2r
2

β2/3r
2/3

βr̂ β2r̂
2

β2/3r̂
2/3




with r ≈ 0.13300190127129 and r̂ ≈ 0.48669634316428.

β̃ = .166 was randomly generated to act as the actual data value for the computer simulation.
The values of α and γ were fixed at .11 and .12 respectively. The populations were fixed with the
following initial values:

S1(0) = .90 I1(0) = .10 E1(0) = 0 R1(0) = 0

S2(0) = .75 I2(0) = .25 E2(0) = 0 R2(0) = 0

S3(0) = .85 I3(0) = .15 E3(0) = 0 R3(0) = 0.

In the three population model, the ∂F
∂β computation produces the following matrix:

∂F

∂β
=




−S1I1δβ11 −S1I2δβ12 −S1I3δβ13 0 0
S1I1δβ11 S1I2δβ12 S1I3δβ13 0 0

0 0 0 0 0
0 0 0 −S2I1δβ21 −S2I2δβ22

0 0 0 S2I1δβ21 S2I2δβ22

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0




(Columns 1-5)




0 0 0 0
0 0 0 0
0 0 0 0

−S2I3δβ23 0 0 0
S2I3δβ23 0 0 0

0 0 0 0
0 −S3I1δβ31 −S3I2δβ32 −S3I3δβ33

0 S3I1δβ31 S3I2δβ32 S3I3δβ33

0 0 0 0




(Columns 6-9).

The Gâteaux derivative is calculated to determine which direction to take the gradient in using the
formula:

4



Dβf(x, β) = δβ11

∫ T

0

(−S1I1y1 + S1I1y2) + δβ12

∫ T

0

(−S1I2y1 + S1I2y2) + δβ13

∫ T

0

(−S1I3y1 + S1I3y2)

+δβ21

∫ T

0

(−S2I1y4 + S2I1y5) + δβ22

∫ T

0

(−S2I2y4 + S2I2y5) + δβ23

∫ T

0

(−S2I3y4 + S2I3y5)

+δβ31

∫ T

0

(−S3I1y7 + S3I1y8) + δβ32

∫ T

0

(−S3I2y7 + S3I2y8) + δβ33

∫ T

0

(−S3I3y7 + S3I3y8).

3 Results

The value of β was recovered by calculating the finite difference:

βt+1 = βt − τ ▽ J(βt)

where τ is the step size. The gradient was estimated by performing the calculation:

▽J(β) =<
∂J

∂β11

,
∂J

∂β12

,
∂J

∂β21

,
∂J

∂β22

>

where, with h being the step size,
∂J

∂βij
(β)≈

1

h
(J(β + heij) − J(β)).

Given good values for τ and h and running the formula for a reasonable period of time, the difference
between βij and β̃ij is less than or equal to .01. If the experimental value for τ or h is too large, the
error greatly increases. τ and h control the step size so large values will create greater fluxuations
from the calculated derivative. If the calculations are run for too large a T , the actual βij will be
overshot or undershot depending on the starting value of β. The smaller values of β have the largest
errors while the larger values of β have the smallest errors as a result of the maximum difference
being .01. If the value of βij < .01, then the percent error can be relatively large.

4 Future Work

The recovery of variables was done through estimations in these calculations. The computation of
each of the βij needs to worked out computationally through the calculation of the adjoint. The
actual calculations of the adjoint need to be performed and the directional derivative computed.
Other possible continuations would be to include more population groups. The increased complexity
with a large number of populations could create issues in recovering some of the βij ’s. Also, the
model can be desimplied to make the values more realistic. This should include using a realistic
set of data instead of computer generated data to see if it recovery of β is possible outside of the
idealized case.
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