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Diffusion, Flow, and Partial Differential Equations:
An exploration in advanced biochemical reaction systems

Goals and Purpose

In biochemical reaction systems where reaction rates are governed by the Law of Mass
Action, the Goldbeter-Koshland function, and Michaelis-Menten analysis, ordinary differential
equations will suffice to build working models of these systems. However, not all biochemical
functions are so simple. This semester, Professor Aaron Fogelson and I looked at reactions
involving diffusion and blood flow, where models are built using partial differential equations.

We first studied the biological systems involved in diffusion and such similar reactions.
Then I looked at the construction of partial differential equations describing these reactions and
at the manual methods of solving systems of diffusion equations, including Forward (Explicit)
Euler Method, Backward (Implicit) Euler Method, and the combinatory Crank-Nicholson
(Implicit) Scheme.

The focus of my work then shifted to computational solutions. I used MATLAB software
to solve and manipulate the numerical solutions of partial differential equations, specifically
diffusion-modeling equations. Applying numerical solution methods to partial differential
equations converts the equations into ODEs, thus making them workable and solvable. Doing so,
I was able to solve diffusion equations and find at which points the algorithm for explicit
solutions is stable.

Background

When the inner wall of a blood vessel is injured, the body tries to fix the injury by
inducing coagulation. Coagulation is where proteins join and gel to fill the hole by using a series
of enzymatic reactions which control the portion of the enzyme thrombin, which causes gelling.
These enzymatic reactions are regulated by both positive and inhibitory feedback loops. The final
enzyme in these reactions, thrombin, acts by cutting off pieces of a material called fribrinogen
into fibrin monomers. This exposes a binding site so that the fibrin monomers can bind in
different arrangements and make strands of fibrin polymer. These fibrin polymers bind side by
side to form the gel designed to cover inner blood vessel wall injuries.

The reactions in this system deal with diffusion and blood flow (advection) and respond
with respect to time and concentration gradient of various enzymes and chemicals. An enzyme
activates its precursor, called zymogen, to make more of itself, in a process called autocatalysis.
When analyzing this system, it is assumed that all enzyme activation activity takes place on
membrane patches as opposed to in the surrounding solution.

Diffusion Equation-Example

The diffusion equation is often used as a simple model built using partial differential equations.
Concentration distribution can be shown in a segmented rod or box model:
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is the amount of the substance at a point x and time t. Following this line of logic,
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# is the net rate at which the same substance crosses into the segment from the

outside. Flux is defined as the amount of a substance crossing from the left of some point x to the
right of that same location x per unit area per unit time. Here, flux will be defined as J, where
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denotes flow in the opposite direction. By rearranging this equation, it is found that
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Forward Euler (Explicit)
Given a differential equation such as the diffusion equation shown above, we can discretize the
solution’s domain as the first step of a finite-difference approximation.
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Thus, if we know , we can use this to find and so on for certain t’s and
x’s.

More specifically, these discrete variables are fitted as so,

, where j is any integer and t is any positive integer.
Using these new definitions, our function can be reworked as:

This method of solution is explicit, as shown by the fact that the new function value
found is set in regard to already-known terms. For the sake of ease in MATLAB code, three
variables will be redefined:

By varying k and h (time step sizes) to collectively change s, the solution’s stability critical value
is found to be s= ½, where the system is stable only when s is less than or equal to ½.
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s> ½

Backward Euler (Implicit)

In this method, a different approximation of the partial differential equation is utilized.
dt
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The result of a different beginning approximation is a differing end function.
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This method is implicit, meaning that another equation needs to be solved before solving for c.
This is usually done using a fixed point iteration, here left up to MATLAB. This method takes
more time and effort, but it is more effective in solving stiff equations, with larger step sizes
(here denoted as x or h). However, like the Forward Euler method, stability breaks at s greaterΔ
than ½.
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Crank-Nicholson Scheme

The Crank-Nicholson Scheme is an implicit solution method that, generally, averages the
functions found using Forward and Backward Euler. The approximation found follows suit:
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The stability trend of the solution also follows that of the methods by which Crank-Nicholson is
composed. As shown by the following graphs, system stability breaks at s greater than ½.
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Conclusion and Future Plans



This fall’s adventure into the world of partial differential equations is a stepping stone to their
uses in modeling hydrobiological systems, where flow (specifically blood flow) is a countable
factor in a system’s actions. Using the above research, I was able to understand and derive the
basis of two papers dealing with blood vessel injuries and their resulting fibrin-based healing
system. Continuing this research, I will work with Dr. Aaron Fogelson to look further into these
biological systems and model enzyme concentration and interaction in clot formation. This work
promises to be challenging and fascinating-applicable to truly “real life” situations.
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