Bridge decomposition of restriction measures

Abstract

Motivated by Kesten’s bridge decomposition for two-dimensional self-avoiding walks in the upper half plane, we show that the conjectured scaling limit of the half-plane SAW, the SLE(8/3) process, also has an appropriately defined bridge decomposition. This continuum decomposition turns out to entirely be a consequence of the restriction property of SLE(8/3), and as a result can be generalized to the wider class of restriction measures. Specifically we show that the restriction hulls with index less than one can be decomposed into a Poisson Point Process of irreducible bridges in a way that is similar to Itô’s excursion decomposition of a Brownian motion according to its zeros.

Publication
J. Stat. Phys.
Tom Alberts
Tom Alberts
Associate Professor of Mathematics
University of Utah

Related