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We present a self-consistent time-dependent Hartree-Fock scheme for calculating excitation frequencies,
oscillator strengths, dynamic polarizabilities, dispersion forces, and indirect nuclear spin-spin coupling
constants. Ab initio applications on the H, and HF molecules have been performed. The effect of two-
particle, two-hole excitation corrections are included. The results show that the method offers an accurate
and economical alternative to configuration interaction for introducing correlation in second order
properties. The spin-spin coupling constants, which depend on the triplet excited states, are most

influenced by the self-consistency procedure.

I. INTRODUCTION

The conventional perturbation expressions for second
order electric and magnetic properties contain an in-
finite summation over the excited states. In the calcu-
lation of electric polarizabilities the summation runs
over singlet states, whereas spin—-spin coupling con-
stants are determined from a sum over triplet states.'
Most molecular calculations are concerned primarily
with determination of ground state properties and an
accurate representation of the excited states is diffi-
cult to obtain from these schemes. The time dependent
Hartree—Fock (TDHF) method®® or random phase ap-
proximation (RPA)*® calculates directly excitation ener-
gies and oscillator strengths. Dynamic polarizabilities
have previously been calculated in RPA® and by the simi-
lar time dependent variation-perturbation methods’
where the excitation spectrum also is obtained directly.
Recently results have been reported®® where the ex-~
cited states were obtained from a configuration interac-
tion (CI) procedure. In all cases reliable numerical re-
sults have been obtained for the frequency dependent po-
larizability for H,.

The present status of spin—-spin coupling constant cal-
culations is somewhat different, primarily because of
the difficulties connected with representing the sum over
intermediate triplet states. It is well known that the HF
ground state often is triplet~ (and even singlet-) un-
stable, **'? and reliable spin~spin coupling constants are
thus extremely difficult to obtain in any HF-like theory
including RPA and TDHF?, The numerical results for
the HD spin—-spin coupling constant, obtained on the ba-
sis of a simple HF description of triplet states, are
also rather poor,!! éven in cases where the ground state
is very well correlated.'? Very extensive CI calcula-
tions with large basis sets and including all singly and
doubly excited triplet configurations are now available.*?
They give, together with a many-body perturbation ap-
proach, * very good numerical results for HD. Con-
sidering the complexity of the above methods there still
seems to be a need for a more direct way of calculating
spin~-spin coupling constants. The major obstacle to
using TDHF schemes is that triplet excitations are poor-
ly described. It should thus be advantageous to calcu-
late spin-spin coupling constants in self-consistent
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TDHF schemes, **+'6 which are known to greatly improve
the triplet spectra.'

We have previously proposed a self-consistent TDHF
scheme based on a Green’s function approach. ®'7 The
equation of motion for the two-particle Green’s function
is decoupled in a manner consistent with the TDHF ap-
proximation. The self-consistency arises from the ob-
servation that the reduced two particle density matrix
(two-matrix) is the zero-time limit of the polarization
propagator' and that the two-matrix determines the
propagator to be used in the next iteration. The poles
of the propagator are the particle-hole excitation ener-
gies and the residues determine the transition moments.
Like the equation-of-motion scheme, ° the Green’s func-
tion method is specifically designed to evaluate relative
quantities rather than absolute energies and total wave-
functions, We shall here report calculations of oscil-
lator strengths and excitation energies together with re-
sults for dynamic polarizabilities and spin-spin coupling
constants, We will demonstrate that polarizabilities are
described equally well in TDHF and self-consistent TDHF
whereas results for spin-spin coupling constants, as ex-
pected, are considerably improved in the self-consis-
tent scheme.

Besides the problem of properly including correla-
tion, the polarizabilities and spin-—spin coupling con-
stants will of course also depend on the completeness of
the basis set used. In that aspect, a Green’s function
approach is not different from more conventional meth-
ods. Dalgarno and Epstein'® proved that by an appro-
priate choice of basis functions certain sum rules for
oscillator strengths can be satisfied exactly. This cri-
terion has been very useful in determining which basis
functions to be used in calculations of dynamic polariz-
abilities.®® No similar criterion exists for calculation
of spin-spin coupling constants and the results for HD,
for example, are very basis set dependent.? Only the
most recent large scale CI calculations seem to have
used basis sets which are so large that the basis set de-
pendence is eliminated. '

It is our aim with the same basis set to calculate both
dynamic polarizabilities and spin—spin coupling con-
stants. It might then not be optimal to use the Dalgarno—
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Epstein criterion'® which is closely related to evaluation
of polarizabilities. We will instead use as criteria on
the completeness of the basis set that the TDHF oscil-
lator strengths are the same in the dipole length and the
dipole velocity formulation,?! In other words, the dis-
agreement between the two formulations in TDHF is used
as a measure of the incompleteness of the basis set.
This is not necessarily the best criterion, but it has the
advantage that we choose the exponents of the atomic
orbitals on the basis of which model we use rather than
from consideration of which property we want to calcu-
late. Besides the equivalance of the two formulations,
we have used as an additional criterion on the complete-
ness of the basis set the fact that the Thomas-Reiche-
Kuhn sum rule must be fulfilled exactly in TDHF.?
This procedure implies that we calculate the dynamic
polarizability both in the dipole length and the dipole
velocity formulation. The latter is seldom reported in
the literature, and our results show that unless the ba-
sis set is very large, substantial disagreement can be
found between the two, in principle, equally correct
results,

We have in this paper calculated the singlet and triplet
excitation spectrum together with the frequency depen-
dent polarizability, van der Waals forces and spin—spin
coupling constants for H, and HF. Section II briefly
summarizes the self-consistent TDHF equations and Sec.
II gives the formulas for the second order properties
we want to calculate. The results and the discussion of
those are given in the last three sections. '

il. GENERAL EQUATIONS

In the Green’s function formalism the TDHF equation
can be derived from a moment expansion of the equation
of motion for the “particle—hole” Green’s function or
polarization propagator. A geometric approximation to
the moment expansion corresponds to what is normally
called RPA or TDHF, namely the inclusion of all ring
diagrams in the polarization propagator. The method
has been described before, '"*2% and we will only give a
brief outline of the basic concepts.

Since ring diagrams describe repeated particle=hole
scattering events the basic quantities in a TDHF scheme
are the particle~hole operators:

ql=ala,. 1)

They are quasiboson operators which applied to the
quasivacuum, assumed to be a singlet state, '® will give
an excited state if state / is occupied and state & is un-
occupied in the HF ground state. The matrix representa-
tion of the Green’s function that describes the propaga-
tion of a particle-hole excitation is, in the energy repre-
sentation, defined as!®

Po(E)=({qm aiN5

=Z{<°'q" 1Pl hl® Olql 1p)(plg,10)
7 E-E,+E, E+E,~E, ’
@)

Equation (2) shows that the poles for the polarization
propagator are the excitation energies and that the cor-
responding residues determine the transition moments.
The propagator matrix will be of the dimension 2NM,
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where N are the number of occupied and M the number
of unoccupied spin orbitals in the ground state. The
factor 2 arises since we consider both de-excitation ¢,
and excitation ¢ | operators. Let q be the column vec-
tor consisting of all particle~hole annihilators, i.e., of
dimension NM. We will now assume that the moment
expansion for the polarization propagator is geometric,
The propagator in TDHF then becomes

<<q', qf»E <<Q; Q»E}
PE)=\«an an,  «at Qs

{)\ 0 }{EA—A -B }'1 {A 0 }
“lo0 -afl -B  —Ex-A 0 =X

(3)
The A matrix, which defines the metric, is in a natural

orbital®® basis diagonal with occupation number differ-
ences in the diagonal

<[q"u q:rru']>:6mm' (n;"' nk’>=6mm'}\m- (4)

The matrices A and B are the second moments in the
moment expansion of Eq. (2):

Amm‘ =<[[qm; H], qu']) (5)
Bmm’ :<[[qmy H], qm ]) . (6)

All average values are taken over the quasivacuum and

H is the Hamiltonian of the system. It is seen from Eq.
(3) that the determination of the poles for P(E) corre-
sponds to solving a non-Hermitian eigenvalue problem.
By means of a series of transformations, ? it is possible
to express P(E) in a form which directly yields excitation
energies and which only requires a solution of two Her-
mitian eigenvalue problems for A +B and A - B;

Az g }{z Y}{(El—w)‘l 0
P(E)‘{o AE LY 2 0 —(E1+w)‘1}

zr YT Allz 0
X{yf z'f}{ 0 Al/z}' (7)

The exact definition of Z, Y and w in terms of A and B
can be found elsewhere, 2

It is well known that the zero-time limit of a matrix
representation of the double-time two-particle Green’s
function gives the two-matrix.?® The double-time
Green’s function is the Fourier transform of Eq. (2).
The integration over E can be transformed into a con-
tour integral in the complex E-plane and gives the fol-
lowing for the two-matrix:

Mooy ={qm qm-) = Residues of {gn; g1 N0, (8)

The two-matrix in TDHF can now easily be found from
Eq. (7):

M- {(qq» <qq>}
“a'q") (ad'®
AL72 0 zZt VAl Al/2 0
={ 0 )\1/2} {zyT YYT}{ 0 AI/Z} * (9)

In TDHF the HF ground state is used in the evaluation
of A and B from Egs. (5) and (6). This enables us to
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write down closed expressions for A,,. and B, in the
molecular orbital (MO) basis.® In this case A is a unit
matrix and Eq. (7) directly determines the excitation
energies and oscillator strengths. From Eq. (9) we
can determine a new two-matrix and Egs. (5) and (6)
determine other A and B matrices, This procedure de-
fines what we have called the self-consistent polariza-
tion propagator approximation (SPPA), since the itera-
tive scheme is continued until we have obtained a self-
consistent solution for P(E). The TDHF approximation
is inconsistent from the point of view that the HF ground
state is not the vacuum for TDHF excitation. When
self-consistency is reached the ground state becomes
the SPPA quasivacuum. Since we are iterating on the
two-electron densities we can, however, not determine
the quasivacuum, and we do not know whether or not

the two-matrix is N-representable.?® We have examined
this problem by calculating certain sum rules and in-
ternal constraints that an N-representable two-matrix
must fulfill,® In the present application, as well as
earlier,'” we have found that according to those criteria
the two-matrix was nearly N-representable. Especially
for the self-consistent solution the calculated sums de-
viated very little from the exact results.

As stated previously, A and B are square matrices of
dimension NM. By introducing the triplet and singlet
particle-hole tensor operators,

S=1, M,=1 : 'Ql,=—al, ay

, M=0 QG ={aly o= alsar}/ V2

(10)

1. 8=l _ t
, My==1: "@p=0a;3a,,

§=0, M;=0 : 'Q;={aj, p, +a1stus} /V2

the matrix problem will separate into a singlet and trip-
let problem each of dimension NM /4. This does not
mean that the singlet and triplet problems are indepen-
dent. For example, the calculation of A in the triplet
manifold does require knowledge of the singlet two-ma-
trix. This type of coupling will also be present when
molecular symmetry is used to further reduce the size

-

Calculations for H, and HF

of the matrix problem.

In our previous applications of SPPA to m-electron
systems we have calculated A and B in the atomic repre-
sentation'” and we had to transform the A and B ma-
trices into the MO representation. It is advantageous
to calculate A and B directly in the representation in

which we know M, i.e., the MO representation. In this
representation the TDHF matrix elements are
LA 1 =840 By (e =€) = (kR | 1D +2(R1| 2R )
By = (L | R'1) = 2(k1 | R'1) an
Akl g = O Opp (€ — €) - (kk'| D
B = (RU|R'D),
where
k|1 = (1 W ) it @ w@dridr,.  (12)

We have used the notation that k%' (I1') are states which
are unoccupied (occupied) in the MO ground state.

Notice that TDHF reduces to the monoexcited CI
(MECI) approximation when B=0, since the excitation
energies are then determined from a diagonalization of
the A matrix alone. Furthermore, if we only consider
the diagonal elements of A, we find excitation energies
as given in the HF approximation. We thus have a se-
ries of approximations HF — MECI—~ TDHF -~ SPPA|
which can be studied and compared.

Because the metric A does not change during the itera-
tions, " the indexing which refers to states which are
occupied or unoccupied in the MO ground state can be
kept in SPPA. Going beyond TDHF, the quasivacuum
changes and the two-matrix will not, as in HF, merely
have elements which are integers and zeros. The elec-
tronic Hamiltonian in second quantization can be written
25!t

H= Z halag+= Z (rs | v's"Yalal.a,ay, (13)

and general formulas for matrix elements of A and B
can be obtained from Egs. (5) and (6):

lAkl,k'l Alzl w350, E \fj (krlts){<le'letr>+3<3Qk'33QM>}+%'6kk‘ Lr\; 2 (rl |St) {<1Qrtlel'>+3< 3Qrt Qs )}

unoce

(14)

oCc unocc

By perr = B —§ (s | 7D (1Q, 0 ' Q)= Z (kv | B $)(1Qp Qi) + Z Z ks | vl") ('@ ' Quu) +Z Z ('r|sD

unocc oce

QCC UnoY

x(* Qs st>"" Z Z(kl \7’3){< Qs Qrk’>+3<3le Q) } 9 Z E ('l ISV){<1Q1 r st>+3< @, slz>}'

The SPPA corrections to *A are the same as to 'A, and
the corrections to °B are as to 'B except that the singlet
two-electron densities in the first four terms must be
replaced by triplet elements. In the derivations of the
expressions for A and B we have used

(ala,al.a,) =0, (16)

which is consistent with the MO picture that is retained

(15)

]

throughout the iterative scheme. The only non-vanish-
ing elements of the two-matrix involving particle—hole
operators are hence of the type

(alayal.a,;)+0. a7

As mentioned earlier, the elements of an N-repre-
sentable two-matrix should fulfill certain constraints
and sum rules. This means that it is possible to get
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TABLE 1.

2999

Vertical excitation energies, w,, (in eV), and oscillator strengths in the dipole length, f;, and the dipole velocity for-

mulation, fy, calculated for H, (R= 1,40 bohr) in mono-excited CI (MECI), TDHF, SPPA, and SPPA with 2p—2h corrections (2p—2k),

All excitations are from the X2} ground state.

Final state* B'Z} E,F'sy Bz 1z Iz cln, n, m, pizy adzp Ozt cdn,

Wen 12,74 13,08 14,65 15.95 20,49 13.12 14,78  23.56 9.99 12.07 14,17 12.38
MECI f,  0.308 0.0 0.052 0,086 0,276 0.171 0.047  0.528

fy  0.228 0.0 0,050 0,065 0,162 0.138 0,040  0.411

W 12.87 13,06 14,63 15,92  20.35  13.11 14,77 23,46 9.55 12,01 14,14 12,34
TDHF f; 0.285 0.0 0.044 0,069 0,210  0.162 0.043  0.463

fv  0.288 0.0 0,061 0,074 0,189  0.156 0,045 0,457

Won 13.60 13,95 15,52 16.82 21,34 13.99  15.65 24,43 10.92 12,94 15,04 13,25
SPPA £, 0.296 0.0 0.047 0,077 0.230  0.173 0,046 0,491

fv  0.253 0.0 0.056 0,073 0,188 0,141 0,042 0.436

Won  13.06 13,47 15,08 16,38  20.90 13,54 15,23 24,14 10,70 12,66 14,65 12,94
2p—2k  f, 0,297 0.0 0,043 0,068 0.213 0,169 0,043 0,482

fv  0.285 0.0 0,057 0.069 0,187  0.149 0,042 0. 441
RPAD Yo 12.66 14,59 15,67 13,08 14.76

fr  0.293 0,062 0,077 0.1865 0.041

WS, 12,75 13.13* 14, 85° 13.29% 10.65 12,54 13, 374
‘Exact’ f;°  0.300 0.0 0.057* 0.178*

fv® 0.307 0.0

%An assignment was only possible for some of the calculated excitation energies.

"Martin et al. from Ref, 36,

“Calculated from potential energy curves given by W. Kolos and L. Wolniewicz, J. Chem, Phys. 43, 2429 (1965); 48, 3672 (1968);

50, 3228 (1969).
4J. C, Browne, J. Chem. Phys, 40, 43 (1964).

°L. Wolniewicz, J. Chem. Phys, 51, 500 (1969).
1. Wolniewicz, Chem. Phys, Lett. 31, 248 (1975).

other (in principle, equivalent) expressions for A and B,
None of the two-matrices used to compute A and B are
exactly N-representable. Especially the triplet two-
matrix in TDHF is far from satisfying any sum rules,
Since these elements are used in the construction of A
and B from Egs. (14) and (15) the first iteration can
sometimes be so incorrect that we get convergence prob-
lems in the iterative scheme. The singlet two-matrix
is, even in the first iteration, nearly N-representable,
Therefore we used the formal identity

CRrs *Qu =~ 5 Qrs '@ +2('Q,, '@ 0}

to express A and B in terms of singlet two-electron
densities alone. The iterative scheme becomes with
this redefinition numerically more stable and the com-
putational effort is also greatly reduced since iteration
need only be done then in the singlet case.

(18)

It has been found in the equation-of-motion method
that it is often necessary to go beyond self-consistent
RPA treatments when describing singlet excitation spec-
tra.® We have experienced the same trend, namely
that SPPA often gives singlet excitation energies which
are too large.'” This is probably due to an undercor-
relation of excited states as compared to the ground
state. One way to improve self-consistent RPA schemes
would be to try to include two-particle, two-hole excita-
tions (2p—2k). Shibuya et al.?" proposed a first order
perturbation treatment of the 2p—2% corrections. We
have found that to a very good approximation the 2p-2#
corrections can be represented by a perturbation having
the TDHF form in £q. (3).? If we define

An asterisk indicates that the number was estimated by interpolation,

A, =:{([lq,H], a'a"D) +([q, [#,9"q"]D} (19)

Ay=:{{laq,#], a"d'D+{aq,[H, a"a' D} (20
we find approximatively that

bA=ATAA, (21)

5B=0, (22)

where 6A and 6B are the 2p-2h corrections to A and B
defined in Eqs. (5) and (6). The derivation can be found
elsewhere,?® Since 6A is only a small correction to A
we have iterated the SPPA equations to self-consistency

TABLE II. The basis functions &,,,(r,8, @) =N""1e"Y,. (6,9),
used in the calculations of second order properties and excita-
tion spectrum for H,,

w

3

1
. .
[505)]

1
’

L i ol B I S S S i o S o S S e S
HHERHMORMODOOODOOO|S

WWwWWWNDNNNR W=~ I
OOOOOHH.OOOOONP—‘ [ad
LWWOo O U = NN =g W
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TABLE III. Energy weighted sum rules for H, (R =1, 40 bohr)
in mono-excited CI, (MECI), TDHF, SPPA, and SPPA cor-
rected with 2p—2h excitations (2p—2k). Results are given in
the dipole length (L) and the dipole velocity (V) formulation,
Atomic units are used,

2p—2h RPA? VDP Other

MECI  TDHF SPPA

5,@) L 204 1,84 2,05 1,98 1.64 0,82
t vV 0.88 1,01 1. 07 1.05

5,2) L 1.35 1,18 1.87 1,30 2,85 1.93

B Vv o1.08 1,17 1.21 1.19

s, (1) L 1.76 1.41 1.57 1,47 1.33 1,21

" vV 1,06 1.26 1,27 1.28

S.) L 1.69 1.50 1.67 1.61 1.84 1,67

+ Vo 1,33 1,48 1.46 1.47

$.(0) L 2,44 2,00 2.13 2,04 1.99 2,00 2¢

! vV 1.65 2,00 1.87 1.96 2¢

s L 2,24 2,00 2.13 2,08 2,00 2,00 2¢

4 Vo1 1,97 1.86 1.90 2¢
S.(-1) L 4,00 3,40 3,40 3.38 3,48 3.58 3.45¢
BTy 2,86 3,51 3,05 3,33

S.<1) L 3.15 2,86 2,89 2,88 2,84 2,91 2,834
Ty 2.m 2,81 2,50 2,61

s (<2) L 7.14 6,25 5,82 6.04 6.48 6,80 6, 38¢
Ty 5,26 6.51 5.25 6,01

S.(<2) L 4,79 4,40 4,21 4,31 4,61 4,77 4, 58¢
N Vv  3.83 4,32 3.60 3.89

*Martin et al. in Ref, 6.

bSemiempirical results of Ref, 31.

CExact value,

4w, Kolos and L. Wolniewicz, J. Chem, Phys, 41, 3663
(1964),

*W. Kolos and L. Wolniewicz, J. Chem, Phys, 46, 1426
(1967),

as described above, and then added the 2p-2k correction
to the self-consistent result. This means that the 2p—
2h correction is not calculated with respect to the SPPA
quasivacuum; however, because of the smallness of the
corrections, this is only a slight inconsistency in the
treatment. '

Il. CALCULATION OF PROPERTIES

An advantage of Green’s function theory is that many
molecular properties can easily be derived from the
propagator. The two-particle propagator is a convenient
starting point for determination of excitation energies
and oscillator strengths as well as molecular properties
such as dispersion forces and spin-~spin coupling con-
stants.® Equation (7) directly gives the excitation ener-
gies (+ w) and a comparison of Eqs, (2) and (7) shows

TABLE IV. Energy weighted sum rules, the lowest excitation
energies (in eV) and corresponding oscillator strengths, f, for
H,. Results are given in TDHF using the basis set of Ref, 35,

Dipole length Dipole velocity

5,(0) 2,04 1,97
5,(0) 2.71 1,55
Sy(=1) 3,49 3.39
§,(~1) 3.73 1.80
flo—a*) 0.603(14, 45% 0.563(14, 459

flo—7*) 0.902(31,12% 0.515(31,12%)

8Excitation energies.

TABLE V. Transition moments for the two lowest
allowed o transitions for H, (columns 1 and 3 in Table
1), given in the dipole length (L) and the dipole veloc-
ity (V) formulation,

B!z} By
L 0,994 0, 382
MECI Vv 0.400 0,201
L 0,959 0,351
TDHF v 0,448 0,222
L 0.942 0.353
SPPA \% 0.435 0,219
L 0,964 0,340
2p=2h * *
p—2h 14 0.452 0,218
that
©lg,|p=N/2z, (23)
1 _
0gh |py=22y,,, (24)

where |0} is the quasivacuum and [p) an excited state.
Those relations can be used to determine transition mo-
ments. For a general Hermitian one-electron operator
M the transition moment is

© M) =3 s (0| afay | p)+185,0] e} £}

=2 MMz, vm, v, )} (25)

n=(k1)

where
M, =M,, =J’u:1\A’Iu,dr,
and u, is an MO.

If we substitute for M the operators t and p, we get,
using Y, Z and the matrix elements of T and P in the
MO basis, the transition moments in the dipole length
and dipole velocity formulation respectively. The cor-
responding oscillator strengths can be found as (in a.u.)

E=3[C0|F [p)|*w, (26)
FL =318l |2/ w,, . 27)

Harris® has shown that TDHF gives identical oscillator
strengths in the dipole length and velocity formulation.
Disagreement is due to the incompleteness of the basis
set used. The equivalence (in TDHF only) has been used
as a criterion on the completeness of the basis set. We
have examined individual oscillator strengths as well

as a few energy weighted sum rules of the type

S) :Zfop“’;p , (28)
7

where f,, can be either of the two equivalent oscillator

strengths. For n =0 the Thomas—~Reiche-Kuhn sum rule
states that
S(0) =N, (29)

where N is the number of electrons in the system. This
sum rule is fulfilled exactly in TDHF.?! For a diatomic
molecule it is often convenient to distinguish between
transitions along the internuclear axis (II) and perpendic-
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TABLE VI. Static dipole polarizability and anisotropy for H, at R=1.40 bohr. Results are given in
HF, MECI (mono—excited CI), TDHF, SPPA, and SPPA corrected with 2p—2k excitations (2p—2h). No
vibrational averaging is included.

Ofu(ag) al(ag) o (aﬁ) L% (ag)
Length Velocity Length Velocity Length Velocity Length Velocity

HF 6.29 3.59 4,44 3.01 5,06 3.21 1.85 0,58
MECI 7.14 5,26 4,79 3.83 5,57 4,31 2.35 1,43
TDHF 6.25 6.51 4,40 4,32 5,02 5,05 1.85 2,20
SPPA 5.82 5.25 4.21 3.60 4,74 4,15 1.61 1,65
2p—2h 6.04 6.01 4,31 3.89 4,88 4,60 1,73 2.13
FBI® 6.41 4,57 5.18 1,84

KW® 6.38 4,58 5.18 1.80

FBII* 6,74 4,74 5,41 2,01
Experiment® 5,44

"Reference 9, without vibrational and rotational averaging.

PW. Kolos and L. Wolniewicz, J. Chem, Phys. 46, 1426 (1967),
“Reference 9. Results include vibrational and rotational averaging.

9D, M. Golden and B, Crawford, Jr,, J. Chem. Phys. 36, 1654 (1962),

ular to the axis (L).3° We know that
S(0)=N (30)
S.(0)=N, (31)

where we in general have defined

quantities in Egs, (35) and (36) involves an infinite sum-
mation. In TDHF® and SPPA we perform the summation
directly over the calculated excited states and thus ap-
proximately represent the continuum with a finite num-
ber of discrete levels, as done successfully in many
previous calculations. .

S,y =3 fop(2) 7, (32) It is well-known that TDHF often gives very incorrect
’ triplet excitation energies and sometimes even shows
3 that the ground state is triplet-unstable.®!® The self-
S,n) =3 D folr, ¥l (33) consistent TDHF scheme has been shown'®!? to greatly
)

improve the description of the triplet spectrum. The
and indirect nuclear spin-spin coupling constant can be ex-
§ sopx e N N 1

Stn) ={S, () + 25, )} (34) pressed as an infinite sum over triplet excited states.

It is reasonable to assume that SPPA should be able to
fop(2) is the oscillator strength for transitions polarized
along the internuclear axis (o-transitions) and f,,(x, y) is
the sum of oscillator strengths for transitions with po-
larization directions perpendicular to the internuclear
axis (non o-transitions). All the sum rules give, as
stated above, identical TDHF-results in the dipole length
and dipole velocity approximation.,

Knowing the oscillator strengths, it is straightforward
to calculate the frequency dependent dynamic dipole po-
larizability tensor for a diatomic molecule®;

@, (@) =3 D fop(2)/(wd, — w?) (35)
p*0
o) =3 PIFCRVE P (36)

The trace of the polarizability tensor is

a(w) =3[, (w) +20,(w)] (37)
and the anisotropy is

r(w)=a,(w)~a,(w). (38)

Several macroscopic properties such as the refractive
index, the Verdet constant, and Rayleigh scattering
cross section are directly related to a(w) and y{(w).% 3!
The second-order dipole-dipole dispersion energy
for diatomic molecules is also easily determined
from knowledge of «,(w).?® Evaluation of the basic

give a more reliable determination of spin-spin coupling
constants than for example HF-like theories. Ramsey®®
has shown that for small molecules the most important
contribution to the indirect spin-spin coupling between

nuclei comes from the contact interaction. Usually the
interaction energy is expressed as
AE = Z Lydyyly (39)
NN*

where I,=(/,,, Iy, Iy,) is the nuclear spin. Jyy- is the
spin-spin coupling tensor. According to Ramsey, ¥

TABLE VII. Dispersion-force coefficients® for a pair of hy-
drogen molecules with R=1,40 a;,. Atomic units,

C T A
Length Velocity Length Velocity Length Velocity
HF 12,65 5,16 0,104 0,038 0,011 0,002
MECI 13,80 8.18 0.113 0.080 0,014 0,007
TDHF 11,01 11,10 0.093 0.113 0,010 0.014
SPPA 10.51 8,07 0,086 0.103 0,008 0,012
2p~2h 10.76 9.49 0,088 0.122 0.009 0,016
LGK" 11,5 0,097 0.010
FB® 11,35 0.099 0,010

3For a definition of C, T, and A see Ref., 30,
PReference 30,
°Reference 9,
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(O] Hy (N) 1p) {p |Hp(N") 10) + (O 1H (N ) [ p){p | Hp(N) 10

or. =LY

58
NN p+0 Ey,-E,

where Hz(N) is the contact Hamiltonian which in second
quantization can be expressed as™

HF(N) :Zq;v' {iQrt(INx - iINy) +31Qrt(1Nx +7:1Ny) +/2 gQrtINg}
Tt

(41)
with

4
a8 =5 B (R (R 42)

g is the electronic electromagnetic ratio, 8 the Bohr
magneton, ¥, the nuclear gyromagnetic factor for nu-
cleus N with position Ry. The field operator is ex-
panded in a complete set {u,} which we will approximate
with the MQ’s of the system. The particle-hole opera-
tors are defined in Eq. (10). Comparison of Egs. (2),
{40), {(41) and {42) shows that

AEg, = § Re{{Hp (N); Hp (NI»)E:O

=2 Z Z Z qiv:q I:Zt'Re«gQrt; 3Qr't'>>E=oIN'lN' .

NN 7t 7't
(43)
Equation (39) hence defines

oy =20, a5 q % Re((®Qu; *Qp e Npml,  (44)

rt e
where I is a unit dyadic.

The spin-spin coupling constant measured in nonvis-
cous high resolution NMR experiments is the isotropic
part of ., *ie.,

Jyw =22 Z ay, ay ¢ Re(( Qs Qe ¢4)) p=0 5 (45)
rt 7't
If we use the actual form of the two-particle propagator
in Eq. (3) the spin-spin coupling constant can be eval-
uated directly, in any iteration of our scheme, as

C
Iyw == 42? ‘2‘: Np(CA = ®B)ig, e Mo 410G i - (46)

This final formula shows clearly that spin—spin coupling
constants depend on the triplet excited states alone,

IV. RESULTS FOR H,

The excitation spectrum for H, in Table I was eval-
uated with the basis set given in Table II. The basis
functions were chosen to minimize the difference be-
tween TDHF oscillator strengths obtained in the dipole
length and the dipole velocity formulation. We have
considered the equivalence of individual oscillator
strengths as well as certain energy weighted sum rules,
some of which are given in Table III. In variational
schemes the basis functions are normally chosen to
minimize the ground state energy. This gives a good
description of ground state properties but does not nec-
essarily lead to an optimal choice for excited states.
The basis set of Das and Wahl® represents such a choice

(40)

b

f

for H,., We used this basis set, consisting of 14 opti-
mized Slater-type orbitals (STO), to calculate the exci-
tation spectrum for H,. The results are given partly

in Table IV and partly elsewhere.?® Comparison between
the results in Tables I and IV clearly shows that basis
set of Das and Wahl gives a rather poor description of
the excitation spectrum. That this is especially true

for the g—n* transitions is understandable since H, in
HF only has occupied orbitals with ¢ symmetry.

We might get an idea of the completeness of the basis
set from a comparison of our TDHF resulis and the RPA
results of Martin ef al.® The methods are the same
and the deviations are caused by the different choice of
basis set. Their Gaussian (GTO) basis set, being much
larger than ours, gives a completely different (discrete)
representation of the continuum states. Martin et al.®
only report trangition energies for the allowed singlet
transitions. For the lowest allowed transitions we find
very good agreement between TDHF and RPA results
of Ref. 36 and Table III shows that the overall quality
of the sum rules obtained with 54 GTO’s and 28 STO’s
is comparable. Some of the perpendicular sum rules
seem to be slightly better in the GTO basis, indicating
that our 7-basis set is probably less complete than that
of Martin ef al.® This finding might be rather surpris-
ing since it is normally argued that comparable results
are obtained with a GTO/STO-ratio of not less than 3.%
This conclusion is, however, based on consideration of
properties connected with the ground state and other low
lying states. Since continuum one-electron states look
neither like STO’s nor like GTQO’s, there is no reason to
believe the STO’s should give a better discrete repre-
sentation of the continuum, Furthermore the rather
substantial deviations between the dipole length and the
dipole velocity results for $(2) and S(1) demonstrate that
we have a far from complete description of the contin-
uum.

The excitation spectrum in Table I shows the same
trends as observed earlier, '*® namely that (i) excita-
tion energies are consistently higher in SPPA than in

TABLE VII. Indirect nuclear spin—spin coupling constant (in
cps) evaluated for HD at R = 1. 40 bohr,

Method Results
Hartree—Fock 29.74
Mono-excited CI 40,09
TDHF 59,97
SPPA 46,42
SPPA with 2p—2h corrections 46,95
Kowalewski et al,® 43,26
Experiment® 42,94

tResults from Ref. 13 without vibrational averaging, See also
Table 4 of this reference for a comprehensive review of earli-
er calculations,

b, Benoit and P. Piejus, C. R. Acad, Sci. (Paris) B265, 101
(1967),

J. Chem. Phys., Vol. 63, No. 7, 1 October 1975



Oddershede, Jdrgensen, and Beebe: Calculations for H, and HF 3003

TABLE IX. The lowest vertical excitation energies, w,, {in eV), and corresponding oscillator strengths in the dipole length, f,
and the dipole velocity formulation, fy, calculated for hydrogen fluoride at R =1, 733 bohr using the basis set of Ref, 39. All exci~

tations are from the 'Z* ground state,

Final state  !z* tx+ 13- n nn A o dxe iz 3y ) A

Con 15, 92 18.27 15.60 12,72 19, 07 15,59 20,12 14,11 15,60 14,87 11.82 18,85 15,27
MECI f, 0.035 0.386 0,023 0,016

fy 0. 038 0,249 0,024 0,011

Com 15,88 18,01 15,57 12.65 19, 04 15,57 20.12 13,62 15,57 14,74 11,68 18,79 15,20
TDHF f, 0,030 0. 342 0, 024 0.016

fv 0.038 0. 349 0.017 0.013

Won  17.18 19,54 16,71 14,19 20.59 16,69 21,11 15,73 16,70 16,22 13.28 20.37 16,37
SPPA f, 0.007 0, 399 0,028 0,017

fy 0.009 0.336 0,021 0,011

W 14,15 17,02 13.83  11.6% 18,24 13,77 18.23 13,24 14,51 13.59 10.94 18.10 13.59
2p=2k fy 0.001 0,358 0. 024 0,016

Iy 0.001 0.412 0.027 0,013
crp “on 13.99 16, 62 13.65 10,98 17,40 13,27 17.80 13,13 13,63 13,64 10,40 17,30 13,23

f1 0.01 0,39 0.03 0,02

2Results of the CI calculation of Bender and Davidson, Ref, 39,

TDHF; (ii) the effect is more pronounced in triplet than
in singlet; (iii) the 2p—2h corrections will lower the
SPPA-excitation energies, especially in singlet; and
(iv) the net effect is a substantial improvement of the
triplet TDHF-spectrum and an almost equally good
singlet spectrum in TDHF and SPPA corrected with
2p-2h excitations. The calculated excitation frequen-
cies are, however, all slightly too high, particularly
for singlets. Presently,?2® the calculation of 2p—2%
correction is based on consideration of the diagonal
elements of A;; alone [Eq. (29)] and those elements are
furthermore approximated with orbital energy differ-
ences. Although this procedure gives the major changes
in the excitation spectra, a more accurate treatment of
A;; elements is needed and investigation of this problem
is under way.

For the oscillator strengths in Table I, the tendency
is also clear: Improved agreement between the dipole
length and the dipole velocity results when going from
MECI to TDHF and from SPPA to 2p-2h. The two
formulations are, as stated before, exactly equivalent
in TDHF? but not necessarily in SPPA and in SPPA with
2p—2h corrections, Due to our choice of basis functions
the agreement is best in TDHF even though the 2p—2#
results are nearly equivalent. The changes in oscillator
strength caused by inclusion of 2p—2#k excitations origi-
nate from both transition moments and excitation ener-
gies. In most cases the energy change is responsible
for the major effect, but Table I shows that for the
X'z; to B'T, excitation, for example, the trends in ex-
citation energy and the dipole length oscillator strength
are opposite. To illustrate this point further we have
in Table V listed the transition moments for the two
lowest allowed o transitions. This table shows that the
changes in transition moments in most cases are more
pronounced when going from SPPA to SPPA with 2p-2h
corrections than going from TDHF to SPPA. Even
though those changes are always smaller than the dif-
ference between the TDHF and MECI moments, it seems,

for certain excitations, to be important to estimate the
effect of 2p—2h excitations on the transition moments.
This conclusion disagrees slightly with the one reached
by Shibuya etal.®

Dalgarno and Epstein'® have shown that it is possible
to have certain sum rules for oscillator strengths ful-
filled exactly if the basis set contains the product of the
perturbing operator (e.g., r) and the ground state wave-
function. Calculations where basis functions are chosen
according to this criterion give very accurate results
for polarizabilities and Van der Waals forces.®® The
sum rules in Table III show that our basis set does not
fulfill the Dalgarno-Epstein requirement. Consequent-
ly the polarizabilities and dispersion forces in Tables VI
and VII are not as accurate as those obtained by either
much larger® or more carefully chosen® basis sets, It
is, however, clear that improvement in polarizabilities

TABLE X, The lowest TDHF -transition energies, w,,

(in eV), and corresponding oscillator strengths for hy-
drogen fluoride. Designations and constants are the same
as in Table IX except that we have used the basis set of
Cade and Huo, ?

Final state Won f1 fv
Iy+ 18,44 0. 395 0,398
o 27.70 0.088 0.086
1g- 24,04

n 13.75 0. 020 0,013
o 25,80 0,060 0.035
A 24,35

A 38.24

Sz 14.15

S+ 24, 04

Eho 20.85

n 12,55

' 24,53

3A 22,83

*Reference 40,
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TABLE XI.
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Calculated with the basis set given in Ref, 39, Atomic units,

Static dipole polarizabilities for hydrogen fluoride at R =1, 733 bohr,

oy o
Length Velocity Length Velocity Length Velocity

Hartree—Fock 6.25 4,17 2,51 1.86 3.75 2,62

Mono-excited CI 6,01 3.78 2,52 1.92 3.68 2.54

TDHF 5,24 4,98 2,40 2,00 3.39 3.00

SPPA 4,93 4,00 2,29 1,72 3.17 2.48

SPPA+2p—2h 5,38 5,51 2.50 2,27 3.46 3.35

KK® 5.34 2,46 3.42

SL® 5,80 4,20 4,73

Epstein® 5,33 6,15 4,04 4, 36 4,47 4,95

M. Karplus and H. J. Kolker, J, Chem. Phys. 39, 2011 (1963).

PR, M. Stevens and W. N. Lipscomb, J. Chem, Phys, 41, 184 (1964).

°I. R, Epstein, Ref, 45,

and related quantities closely follow improvements in the
sum rules, i,e., the best results are obtained in TDHF
and an increase in the size of the basis set will further
improve the sum rules.

It is in this communication, however, not our aim to
try to reproduce very accurate results but instead to
show how TDHF-like schemes can be used to evaluate
several different properties in the same calculation,
Therefore, we have with the same basis set also com-
puted the indirect nuclear spin-spin coupling constant
for HD. The results are given in Table VIII, This
table demonstrates that the SPPA results, with or with-
out the 2p~27 corrections, are much better than the
TDHF values. As stated before, the spin-spin coupling
constant is a “triplet” property which means that it is
rather poorly determined in TDHF as compared with
SPPA, the same tendency as was seen in the excitation
spectrum in Table I, The good agreement between
MECI and the experimental value is of course purely
accidental. Since the basis set is fixed, the results in
Table VIII show the importance of electronic correla-
tion when going from HF with no correlation to SPPA
where both the ground state and excited states are cor-
related. We believe that the remaining disagreement
between our results and that of Kowalewski et al.!® is
due mainly to the incompleteness of our basis set.

V. RESULTS FOR HYDROGEN FLUORIDE

The excitation spectrum for HF was computed using
the basis sets of Bender and Davidson® (33 STO’s) and
of Cade and Huo*® (32 STO’s). The results for the low-
est transitions are given in Table IX and Table X. The
basis set of Cade and Huo was determined from a mini-
mization of the ground state energy in the Hartree—Fock
approximation. For a description of excited states it is,
as seen for H,, necessary to introduce less contracted
STO’s in the basis set. For hydrogen fluoride this was
done by Bender and Davidson,® Their basis set, con-
sisting of 33 STO’s is of the same size as that of Cade
and Huo. The exponents were chosen to reproduce, as
accurately as possible, the charge density of the ground
state as given by Cade and Huo®® at the experimental
internuclear separation, R =1,733 bohr, Tables IX and

X show that only for the very lowest excitations do the
two basis sets give comparable results. As for H, we
have also calculated energy weighted sum rules. The
results of those, together with the very large excitation
energies in Table X, make it clear that the basis set

of Bender and Davidson® gives a superior description
of properties connected with excited states,

Since all numbers in Table IX are produced with the
same basis set a direct comparison is possible. The
trends in our results are the same as those already
commented on for H,, except that here the effect of the
2p—2h excitations is slightly more pronounced. This is
probably due to the fact that we in HF have more than
two valence electrons. This means that the 2p-2# cor-
rections will introduce correlations among electrons in
occupied MO’s, an effect which is not present in H,, %
The excitation frequencies and corresponding oscillator
strengths agree quite well with those found by Bender
and Davidson, * even though our final excitation ener-
gies seem to be slightly larger, especially in the singlet
case. The deviations stem from the different choice of
configurations in SPPA with 2p—2k corrections and in
the selective CI method of Bender and Davidson, %%

Very little is known experimentally about the absorp-
tion spectrum of HF. Waggoner et al.*? have reported
a very sharp absorption peak at 13.0 eV, which they
assigned to the lowest X !3* - Il transition (N ~@ transi-
tion). Di Lonardo and Douglas*® have observed the same
transition at 13.03 eV and an X 'T*=a °IT transition at
slightly lower energy. (They do not say how much low-
er,) All these observations seem to agree with our cal-
culated spectrum. Our value of 11, 63 eV for the N— @
transition is closer to the experimental value than that

TABLE XII. Dispersion-force coefficients® for a pair of hydro~
gen fluoride molecules with R =1, 733 bohr, Atomic units,

C by A
Length Velocity Length Velocity Length Velocity
Hartree—Fock 10,2 4.85 0,33 0,29 0.11 0.08
TDHF 8,03 6.30 0.28 0.32 0,08 0.10
SPPA +2p-2h 8,23 7.82 0.27 0,32 0.08 0,10

For a definition of C, T, and A, see Ref, 30.
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TABLE XIII. Indirect nuclear spin—spin coupling constant (in
cps) for hydrogen fluoride at R =1, 733 bohr,

Hartree—~Fock 307.92 294,1°
Mono excited CI 506, 4% 610, 6°
TDHF 783, 5% 1018, 6°
SPPA 669. 2% 829, 1°
SPPA with 2p—2k corrections 643.7* 760, 8°
CNDO® -150,3

INDQ® 19.7

Kato and Saika® 528, 1

Murrell et al,® 835.6

Experiment! 577 589 230

3L valuated with the basis set of Bender and Davidson, Ref. 39.

YEvaluated with the basis set of Cade and Huo, Ref, 40,
°Semiempirical values taken from J. A, Pople and D, L. Bev-
eridge, Approximate Molecular Ovbital Theory McGraw—
Hill, New York, 1970) p. 157,

dFrom Ref, 47 taken into account the numerical error detected
by Murrell et al, in Ref, 49,

®SC¥ +CI results from Ref, 49.

In both experimental values the orbital and spin-dipolar terms
are subtracted, estimated from Kato and Saika®’ to be — 60
cps,

&. MacLean and E. L, Mackor, Proc. XI Collog. AMPERE
1962, 571,

hJ. S, Muenter and W, Klemperer, J, Chem, Phys. 52, 6033
(1970).

found by Bender and Davidson. 3 The singlet—triplet
excitation reported in Ref. 43 is here predicted to lie
at 10.94 eV. Like Bender and Davidson, we do find a
very strong transition around 17 eV, which can be as-
signed to the “charge transfer” state (¥—V transition).
A transition of this type was observed by Waggoner

et al.*? but was not nearly as strong as predicted by
the two calculations.

We have in Fig. 1 plotted the frequency-dependent
dynamic dipole polarizability as calculated in SPPA with
2p~-2h corrections. Results in different approximations
for the frequency independent polarizabilities and dis-

w
F
-

05 10 15 .20 .25 .30 .35 40 45

FIG. 1. The frequency dependent dynamic dipole polarizabil-
ity, a(w), for HF. Our results are given in SPPA corrected
with two-particle, two-hole excitations in the dipole length (=)
and the dipole velocity (----) formulation, respectively, For
comparison, the polarizability from Ref, 45 is also plotted
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FIG. 2. The frequency independent polarizabilities o, (0) [---]
and a(0) [—] for hydrogen fluoride [defined in Eqs. (35)—(37)
of the text] versus the number of excitations included in the
sum over excited states. The excitations are arranged in or-
der of increasing energies, SPPA+2p-2k results are used.

persion—-force coefficients are listed in Tables XI and
XII, respectively. Comparison is made with the time
dependent coupled Hartree—Fock* calculations of Ep-
stein.*®* He used a smaller basis set than we do (19
STO’s for «,) but the exponents were varied to give an
optimal description of second order properties. The
basis set of Bender and Davidson® is not optimized in
the same fashion and we do find that the sum rules for
oscillator strengths show deviation from the correct
results, especially for the perpendicular components.
Following our experience from H, this might indicate
that also the polarizabilities will be less accurate, We
can from Table XI and Fig, 1 see that our results in
fact do disagree with those of Epstein® even if we as-
sume that the error bars on ours are given by the dif-
ference between the dipole length and dipole velocity
results, Other calculations, some of which are included
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FIG. 3. The indirect nuclear spin—spin coupling constant for
HF, Jyp, plotted as functions of the number of particle—hole
excitations included in the sum in Eq, (46) of the text, The
dotted line indicates Hartree—Fock results and the solid lines
are SPPA results corrected with 2p—2% excitations, The ex-
citations are arranged in order of increasing energies.
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in Table XI, give polarizabilities which are closer to
ours, but lack of experimental results makes it impos-
sible to make definite statements about the reliability
of the different calculations.

We have in Fig. 2 investigated the error introduced
by the truncation in the sum over excited states in Eqgs.
(35) and (36). «,(0) and a(0) are plotted as functions of
the number of excitations included in those sums. Both
curves show a clear convergence, Notice, though that
it is necessary to go beyond 50 excitations before the
levelling off occurs. The results are given in SPPA
with 2p—2/h corrections but the convergence is the same
in Hartree—Fock or any of the other approximations
examined.

In the basis that was used to calculate static polariz-
abilities, Epstein®® also computed the lowest 'T*— 11
and 'z*~ 12" transition frequencies to be 12.21 and
15,85 eV, respectively, Both values are larger than
those given in the last two rows in Table IX, and espe-
cially the '=”~!Z* lies substantially higher. Epstein®
also quotes excitation energies for H, which are about
1 eV too high. In calculations*® on He,, we have ob-
served that excitation energies usually are too high
when calculated from “smaller” basis sets which are
optimized to fulfill certain oscillator sum rules. It
seems as if this trend also holds for HF (and H,).

The first extensive calculation of the indirect nuclear
spin-spin coupling constant for HF was performed by
Kato and Saika.*’ They applied a sum-over- states per-
turbation procedure. Hartree-Fock excited states were
used, i.e., in the ground state wavefunction, one oc-
cupied MO was replaced with a virtual HF orbital. A
similar procedure was followed by Adam et al.** In
neither of the two calculations did they observe any con-
vergence in the sum-~over-states expansion. Murrell
et al.*® found that introduction of configuration interac-
tion in a small basis did not solve the convergence prob-
lem either. We have examined this problem and our results
in Hartree~Fock and SPPA corrected with two-particle,
two-hole excitations are given in Fig. 3. The spin-spin
coupling constant is plotted as a function of the number
of particle~hole excitations (I, £) included in the sum in
Eq. (46). This is exactly equivalent to inclusion of vari-
able number of states in sum-over-states procedures.
The oscillations in Jy are strongest when less than 55
excitations are included in the summation. Between 55
and 75 excitations a noticeable “damping” of those oscil-
lations occurs, which probably indicates that we are ap-
proaching convergence of the sum in Eq. (46). Results
with more than 75 excitations are needed for a definite
conclusion about the convergence but the present com-
puter facilities do unfortunately not allow us to go beyond
75 excitations. Earlier published results'™=* do not in-
clude more than 45 excitations®® which (with reference to
Fig. 3) might explain why no one so far has been able
to reach convergence in the sum-over-states proce-
dures, The data in Fig. 3 also show that the conver-
gence is not affected by introduction of correlation. The
convergence is the same in Hartree—Fock as in SPPA
with 2p-2h corrections. Correlation does, however,
significantly improve the numerical value of the calcu-

lated spin-spin coupling constant. The same conclusions
were reached by Murrell ef al.*® for a calculation using
a much smaller basis set.

In Table XIII we have collected all our final results
together with those of other investigations, We have
used the Cade—Huo*® and Bender-Davidson® basis sets.
Both give spin—spin coupling constants of the same mag-
nitude, even though the latter, as expected, gives the
best agreement with the experiments., The fact that the
two rather different basis sets produce results of com-
parable magnitude seems to support our previous state-
ment concerning the convergence of the sum-over-states
expansion, Our final resuits (SPPA +2p—-2k corrections)
are both larger than the estimated experimental values,
This might be due to an underestimate of the orbital and
spin-dipolar terms in the quoted experimental values.

VI. CONCLUSION

We have in the preceding sections demonstrated how
a self-consistent TDHF procedure advantageously can be
used in ab initio calculations of second order properties,
We have here applied the method to diatomic molecules,
but in principle SPPA calculations can be performed for
any system for which it is feasible to generate a Har-
tree-Fock, multiconfiguration self-consistent field® or
similar molecular orbital basis. The only quantities
needed are the integrals in the MO basis.

The self-consistent procedure is rapidly convergent.
Typically, three to four iterations suffice. The actual
computing time for an ab iritio SPPA calculation varies
from 10 to 100 per cent of that of the preceding HF cal-
culation. Almost all the time is spent on integral re-
trieval. If it was possible to keep the integrals in fast
core this time could be reduced considerably. This im-
plies that in semiempirical applications the computing
time for SPPA is negligible.!” At any rate, considering
the much larger computation effort involved in compa-
rable CI calculations, SPPA is an economical way of
generating nearly the same information. Furthermore
SPPA gives at no extra cost transition moments and re-
lated quantities such as polarizabilities which are sel-
dom available from CI calculations because of the diffi-
culty of evaluating them from large wavefunctions if dif-
ferent orbitals for different states are used.
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