
.

SunOS 5.9 Last change: A tool for statically checking C programs 1



User Commands splint ( 1 )

NAME
splint − A tool for statically checking C programs

SYNOPSIS
splint [options]

DESCRIPTION
Splint is a tool for statically checking C programs for security vulnerabilities and common programming
mistakes. With minimal effort, Splint can be used as a better lint(1).If additional effort is invested adding
annotations to programs, Splint can perform stronger checks than can be done by any standard lint. For full
documentation, please see http://www.splint.org. This man page only covers a few of the available options.

OPTIONS
−help Shows help

Initialization

These flags control directories and files used by Splint. They may be used from the command line or in an
options file, but may not be used as control comments in the source code. Except where noted. they hav e
the same meaning preceded by − or +.

−tmpdir directory
Set directory for writing temp files. Default is /tmp/.

−I directory
Add directory to path searched for C include files. Note there is no space after the I, to be consistent
with C preprocessor flags.

−Sdirectory
Add directory to path search for .lcl specification files.

−f file Load options file <file>. If this flag is used from the command line, the default ˜/.splintrc file is not
loaded. This flag may be used in an options file to load in another options file.

−nof Prevents the default options files (./.splintrc and ˜/.splintrc) from being loaded. (Setting -nof over-
rides +nof, causing the options files to be loaded normally.)

−systemdirsdirectories
Set directories for system files (default is "/usr/include"). Separate directories with colons (e.g.,
"/usr/include:/usr/local/lib"). Flag settings propagate to files in a system directory. If -systemdi-
rerrors is set, no errors are reported for files in system directories.

Pre-processor

These flags are used to define or undefine pre-processor constants. The -I<directory> flag is also passed to
the C pre-processor.

−D initializer
Passed to the C pre-processor.

SunOS 5.9 Last change: A tool for statically checking C programs 1



User Commands splint ( 1 )

−U initializer
Passed to the C pre-processor

Libraries These flags control the creation and use of libraries.

−dump file
Save state in <file> for loading. The default extension .lcd is added if <file> has no extension.

−load file
Load state from <file> (created by -dump). The default extension .lcd is added if <file> has no
extension. Only one library file may be loaded.

By default, the standard library is loaded if the -load flag is not used to load a user library. If no user
library is loaded, one of the following flags may be used to select a different standard library. Pre-
cede the flag by + to load the described library (or prevent a library from being loaded using nolib).
See Apppendix F for information on the provided libraries.

−nolib
Do not load any library. This prevents the standard library from being loaded.

−ansi-lib
Use the ANSI standard library (selected by default).

−strict-lib
Use strict version of the ANSI standard library.

−posix-lib
Use the POSIX standard library.

−posix-strict-lib
Use the strict version of the POSIX standard library.

−1-lib Use UNIX version of standard library.

−1-strict-lib
Use the strict version of the UNIX standard library.

Output

These flags control what additional information is printed by Splint. Setting +<flag> causes the described
information to be printed; setting -<flag> prevents it. By default, all these flags are off.

−usestderr
Send error messages to standard error (instead of standard out).

−showsummary
Show a summary of all errors reported and suppressed. Counts of suppressed errors are not neces-
sarily correct since turning a flag off may prevent some checking from being done to save

SunOS 5.9 Last change: A tool for statically checking C programs 2



User Commands splint ( 1 )

computation, and errors that are not reported may propagate differently from when they are
reported.

−showscan
Show file names are they are processed.

−showalluses
Show list of uses of all external identifiers sorted by number of uses.

−stats Display number of lines processed and checking time.

−timedist
Display distribution of where checking time is spent.

−quiet
Suppress herald and error count. (If quiet is not set, Splint prints out a herald with version informa-
tion before checking begins, and a line summarizing the total number of errors reported.)

−whichlib
Print out the standard library filename and creation information.

−limit number
At most <number> similar errors are reported consecutively. Further errors are suppressed, and a
message showing the number of suppressed messages is printed.

Expected Errors

Normally, Splint will expect to report no errors. The exit status will be success (0) if no errors are reported,
and failure if any errors are reported. Flags can be used to set the expected number of reported errors.
Because of the provided error suppression mechanisms, these options should probably not be used for final
checking real programs but may be useful in developing programs using make.

−expect <number>
Exactly <number> code errors are expected. Splint will exit with failure exit status unless <num-
ber> code errors are detected.

−Message Format
These flags control how messages are printed. They may be set at the command line, in options
files, or locally in syntactic comments. The linelen and limit flags may be preceded by + or - with
the same meaning; for the other flags, + turns on the describe printing and - turns it off. The box to
the left of each flag gives its default value.

−showcolumn
Show column number where error is found. Default: +

−showfunc
Show name of function (or macro) definition containing error. The function name is printed once
before the first message detected in that function. Default: +

SunOS 5.9 Last change: A tool for statically checking C programs 3



User Commands splint ( 1 )

−showallconjs
Show all possible alternate types (see Section 8.2.2). Default: -

−paren-file-format
Use file(line) format in messages.

−hints Provide hints describing an error and how a message may be suppressed for the first error reported
in each error class. Default: +

−forcehints
Provide hints for all errors reported, even if the hint has already been displayed for the same error
class. Default: -

−linelen number
Set length of maximum message line to <number> characters. Splint will split messages longer than
<number> characters long into multiple lines. Default: 80

Mode Selector Flags

Mode selects flags set the mode checking flags to predefined values. They provide a quick coarse-grain way
of controlling what classes of errors are reported. Specific checking flags may be set after a mode flag to
override the mode settings. Mode flags may be used locally, howev er the mode settings will override spe-
cific command line flag settings. A warning is produced if a mode flag is used after a mode checking flag
has been set.

These are brief descriptions to give a general idea of what each mode does. To see the complete flag set-
tings in each mode, use splint -help modes. A mode flag has the same effect when used with either + or -.

−weak
Weak checking, intended for typical unannotated C code. No modifies checking, macro checking,
rep exposure, or clean interface checking is done. Return values of type int may be ignored. The
types bool, int, char and user-defined enum types are all equivalent. Old style declarations are unre-
ported.

−standard
The default mode. All checking done by weak, plus modifies checking, global alias checking, use
all parameters, using released storage, ignored return values or any type, macro checking, unreach-
able code, infinite loops, and fall-through cases. The types bool, int and char are distinct. Old style
declarations are reported.

−checks
Moderately strict checking. All checking done by standard, plus must modification checking, rep
exposure, return alias, memory management and complete interfaces.

−strict
Absurdly strict checking. All checking done by checks, plus modifications and global variables used
in unspecified functions, strict standard library, and strict typing of C operators. A special reward
will be presented to the first person to produce a real program that produces no errors with strict
checking.

SunOS 5.9 Last change: A tool for statically checking C programs 4



User Commands splint ( 1 )

AUTHOR
If you need to get in contact with the authors send email to

or visit

SEE ALSO
lint(1)

SunOS 5.9 Last change: A tool for statically checking C programs 5


