
New directions in floating-point arithmetic

Nelson H. F. Beebe

Research Professor
University of Utah

Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)

WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254

FAX: +1 801 581 4148

26 September 2007

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 1 / 12



Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 2 / 12



Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 2 / 12



Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 2 / 12



Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 2 / 12



Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 2 / 12



Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 2 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 3 / 12



IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12



IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12



IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12



IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12



IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12



IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 4 / 12



IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 5 / 12



IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 5 / 12



IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 5 / 12



IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 5 / 12



IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 5 / 12



IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 5 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 6 / 12



Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 7 / 12



Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 7 / 12



Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 7 / 12



Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 7 / 12



Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 7 / 12



Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 7 / 12



Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 8 / 12



Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 8 / 12



Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 8 / 12



Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 8 / 12



Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 8 / 12



Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 8 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 9 / 12



Decimal floating-point arithmetic

s cf ec cc

bit 0 1 6 9 31 single

0 1 6 12 63 double

0 1 6 16 127 quadruple

0 1 6 22 255 octuple

o IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer
Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide
3n + 1 digits: 7, 16, 34, and 70

o wider exponent ranges in decimal than binary: [−101, 97],
[−398, 385], [−6176, 6145], and [−1 572 863, 1 572 865]

o cf (combination field), ec (exponent continuation field), (cc)
(coefficient combination field)

o Infinity and NaN recognizable from first byte (not true in binary
formats)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 10 / 12



Decimal floating-point arithmetic

s cf ec cc

bit 0 1 6 9 31 single

0 1 6 12 63 double

0 1 6 16 127 quadruple

0 1 6 22 255 octuple

o IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer
Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide
3n + 1 digits: 7, 16, 34, and 70

o wider exponent ranges in decimal than binary: [−101, 97],
[−398, 385], [−6176, 6145], and [−1 572 863, 1 572 865]

o cf (combination field), ec (exponent continuation field), (cc)
(coefficient combination field)

o Infinity and NaN recognizable from first byte (not true in binary
formats)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 10 / 12



Decimal floating-point arithmetic

s cf ec cc

bit 0 1 6 9 31 single

0 1 6 12 63 double

0 1 6 16 127 quadruple

0 1 6 22 255 octuple

o IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer
Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide
3n + 1 digits: 7, 16, 34, and 70

o wider exponent ranges in decimal than binary: [−101, 97],
[−398, 385], [−6176, 6145], and [−1 572 863, 1 572 865]

o cf (combination field), ec (exponent continuation field), (cc)
(coefficient combination field)

o Infinity and NaN recognizable from first byte (not true in binary
formats)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 10 / 12



Decimal floating-point arithmetic

s cf ec cc

bit 0 1 6 9 31 single

0 1 6 12 63 double

0 1 6 16 127 quadruple

0 1 6 22 255 octuple

o IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer
Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide
3n + 1 digits: 7, 16, 34, and 70

o wider exponent ranges in decimal than binary: [−101, 97],
[−398, 385], [−6176, 6145], and [−1 572 863, 1 572 865]

o cf (combination field), ec (exponent continuation field), (cc)
(coefficient combination field)

o Infinity and NaN recognizable from first byte (not true in binary
formats)

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 10 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 11 / 12



Virtual platforms

Nelson H. F. Beebe (University of Utah) New directions in floating-point arithmetic 26 September 2007 12 / 12


