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Historical floating-point arithmetic

o Konrad Zuse’s Z1, Z3, and Z4 (1936–1945): 22-bit (Z1 and Z3) and
32-bit Z4 with exponent range of 2±63 ≈ 10±19

o Burks, Goldstine, and von Neumann (1946) argued against
floating-point arithmetic

o It is difficult today to appreciate that probably the biggest problem
facing programmers in the early 1950s was scaling numbers so as to
achieve acceptable precision from a fixed-point machine, Martin
Campbell-Kelly (1980)

o IBM mainframes from mid-1950s supplied floating-point arithmetic

o IEEE 754 Standard (1985) proposed a new design for binary
floating-point arithmetic that has since been widely adopted

o IEEE 754 design first implemented in Intel 8087 coprocessor (1980)
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Historical flaws on some systems

Floating-point arithmetic can make error analysis difficult, with behavior
like this in some older designs:

o u 6= 1.0× u

o u + u 6= 2.0× u

o u × 0.5 6= u/2.0

o u 6= v but u − v = 0.0, and 1.0/(u − v) raises a zero-divide error

o u 6= 0.0 but 1.0/u raises a zero-divide error

o u × v 6= v × u

o underflow wraps to overflow, and vice versa

o division replaced by reciprocal approximation and multiply

o poor rounding practices increase cumulative rounding error
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IEEE 754 binary floating-point arithmetic

s exp significand

bit 0 1 9 31 single

0 1 12 63 double

0 1 16 79 extended

0 1 16 127 quadruple

0 1 22 255 octuple

o s is sign bit (0 for +, 1 for −)

o exp is unsigned biased exponent field

o smallest exponent: zero and subnormals (formerly, denormalized)

o largest exponent: Infinity and NaN (Not a Number)

o significand has implicit leading 1-bit in all but 80-bit format

o ±0, ±∞, signaling and quiet NaN
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IEEE 754 binary floating-point arithmetic

o NaN from 0/0, ∞−∞, f (NaN), x op NaN, . . .

o NaN 6= NaN is distinguishing property, but botched by 10% of
compilers

o ±∞ from big/small, including nonzero/zero

o precisions in bits: 24, 53, 64, 113, 235

o approximate precisions in decimal digits: 7, 15, 19, 34, 70

o approximate ranges (powers of 10): [−45, 38], [−324, 308],
[−4951, 4932], [4966, 4932], [−315 723, 315 652]
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IEEE 754 binary floating-point arithmetic

o nonstop computing model

o five sticky flags record exceptions: underflow, overflow, zero divide ,
invalid , and inexact

o four rounding modes: to-nearest-with-ties-to-even (default),
to-plus-infinity , to-minus-infinity , and to-zero

o traps versus exceptions

o fixups in trap handlers impossible on heavily-pipelined or parallel
architectures (since IBM System/360 Model 91 in 1968)

o no language support for advanced features until 1999 ISO C Standard

o some architectures implement only subsets (e.g., no subnormals, or
only one rounding mode, or only one kind of NaN, or in embedded
systems, neither Infinity nor NaN)

o some platforms have nonconforming rounding behavior
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Why the base matters

o accuracy and run-time cost of conversion between internal and
external (usually decimal) bases

o effective precision varies when the floating-point representation uses a
radix larger than 2 or 10

o reducing the exponent width makes digits available for increased
precision

o for a fixed number of exponent digits, larger bases provide a wider
exponent range

o for a fixed storage size, granularity (the spacing between successive
representable numbers) increases as the base increases

o in the absence of underflow and overflow, multiplication by a power of
the base is an exact operation, and this feature is essential for many
computations, in particular, for accurate elementary and special
functions
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Base conversion problem

o exact in one base may be inexact in others (e.g., decimal 0.9 is
hexadecimal 0x1.cccccccccccccccccccccccc...p-1)

o 5% sales-tax example: binary arithmetic:
0.70× 1.05 = 0.734999999 . . . , which rounds to 0.73; correct decimal
result 0.735 may round to 0.74

o Goldberg (1967) and Matula (1968) showed how many digits needed
for exact round-trip conversion

o exact conversion may require many digits: more than 11 500 decimal
digits for binary-to-decimal conversion of 128-bit format,

o base-conversion problem not properly solved until 1990s

o few (if any) languages guarantee accurate base conversion
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Decimal floating-point arithmetic

o Absent in most computers from mid-1960s to 2007

o IBM Rexx and NetRexx scripting languages supply decimal arithmetic
with arbitrary precision (109 digits) and huge exponent range
(10±999 999 999)

o IBM decNumber library provides portable decimal arithmetic, and
leads to hardware designs in IBM zSeries (2006) and PowerPC (2007)

o GNU compilers implement low-level support in late 2006

o business processing traditionally require 18D fixed-point decimal, but
COBOL 2003 mandates 32D, and requires floating-point as well

o four additional rounding modes for legal/tax/financial requirements

o integer, rather than fractional, coefficient means redundant
representation, but allows emulating fixed-point arithmetic

o quantization primitives can distinguish between 1, 1.0, 1.00, 1.000,
etc.

o trailing zeros significant: they change quantization
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Decimal floating-point arithmetic

s cf ec cc

bit 0 1 6 9 31 single

0 1 6 12 63 double

0 1 6 16 127 quadruple

0 1 6 22 255 octuple

o IBM Densely-Packed Decimal (DPD) and Intel Binary-Integer
Decimal (BID) in 32-bit, 64-bit, 128-bit, and 256-bit formats provide
3n + 1 digits: 7, 16, 34, and 70

o wider exponent ranges in decimal than binary: [−101, 97],
[−398, 385], [−6176, 6145], and [−1 572 863, 1 572 865]

o cf (combination field), ec (exponent continuation field), (cc)
(coefficient combination field)

o Infinity and NaN recognizable from first byte (not true in binary
formats)
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Library problem

o Need much more than ADD, SUB, MUL, and DIV operations

o mathcw library provides full C99 repertoire, including printf and
scanf families, plus hundreds more

o code is portable across all current platforms, and several historical
ones (PDP-10, VAX, S/360, . . . )

o supports six binary and four decimal floating-point datatypes

o separate algorithms cater to base variations: 2, 8, 10, and 16

o pair-precision functions for even higher precision

o fused multiply-add (FMA) via pair-precision arithmetic

o programming languages: Ada, C, C++, C#, Fortran, Java, Pascal

o scripting languages: gawk, hoc, lua, mawk, nawk
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Virtual platforms
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