
Newcomb, Benford, Pareto, Heaps, and Zipf
Are arbitrary numbers random?

Nelson H. F. Beebe

Research Professor
University of Utah

Department of Mathematics, 110 LCB
155 S 1400 E RM 233

Salt Lake City, UT 84112-0090
USA

Email: beebe@math.utah.edu, beebe@acm.org,
beebe@computer.org (Internet)

WWW URL: http://www.math.utah.edu/~beebe
Telephone: +1 801 581 5254

FAX: +1 801 581 4148

20 February 2013

Nelson H. F. Beebe (University of Utah) Benford’s Law 20 February 2013 1 / 35



Numbers and distributions

Simulations usually need a source of numeric data, and random values are
sometimes a suitable source.

However, random numbers may conform to different distributions:
uniform, normal, exponential, logarithmic, Poisson, . . .

The key question is:

Do numbers in real data match a uniform distribution?
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A negative answer

Simon Newcomb (1835–1909)
Canadian / American astronomer,
mathematician, economist,
linguist, mountaineer
Note on the frequency of use
of the different digits in natural
numbers, American Journal of
Mathematics, 4(1–4) 39–40
(1881). The short note begins:
That the ten digits do not occur
with equal frequency must be
evident to any one making much
use of logarithmic tables, and
noticing how much faster the first
pages wear out than the last ones.
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But wait. . .

[Newcomb was a co-founder of the American Astronomical Society, and its
first President (1899–1904).]

Consider the integers from, say, 100 to 999. There are 100 in [100, 199],
100 more in [200, 299], and so on up to the last 100 in [900, 999].

We conclude that for random numbers from a uniform distribution:

leading digits have equal likelihood.

There are nine such digits, 1, 2, . . . , 9, so their probabilities are
1/9 ≈ 0.111.
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Newcomb’s prediction

The law of probability of the occurrence of numbers is such that all
mantissæ of their logarithms are equally probable.

digit first second
0 0.1197
1 0.3010 0.1139
2 0.1761 0.1088
3 0.1249 0.1043
4 0.0969 0.1003
5 0.0792 0.0967
6 0.0669 0.0934
7 0.0580 0.0904
8 0.0512 0.0876
9 0.0458 0.0850

In the case of the third figure the probability will be nearly the same for
each digit, and for the fourth and following ones the difference will be
inappreciable.
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Newcomb’s conclusion

It is curious to remark that this law would enable us to decide
whether a large collection of independent numerical results were
composed of natural numbers or logarithms.

Then Newcomb’s work was forgotten for 57 years. . .
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Benford’s rediscovery

American physicist Frank
Benford (1883–1948), in The
Law of Anomalous Numbers,
Proceedings of the American
Philosophical Society, 78(4)
551–572, March (1938), per-
haps unaware of Newcomb’s
work (but he mentions the dirty
pages phenomenon), rediscov-
ered the same curiosity.

Benford’s paper was noticed,
and the law is named after him.

[photograph ca. 1912, age 29]
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Benford’s rediscovery [continued]

Benford illustrated the phenomenon with a great variety of data:

river (drainage?) areas 1/n,
√

n
land area design data generators
US population Reader’s Digest
physical constants cost data for concrete
newspaper items X-ray volts
specific heats American League baseball (1936)
pressure lost in air flow black-body radiation
H.P. lost in air flow AMS street addresses
drainage n1, n2, n3, . . . , n!
atomic & molecular weights death rates
house numbers river drainage rates

He gave frequency data for each, and a cumulative report with first-digit
frequencies: 0.306, 0.185, 0.124, 0.094, 0.080, 0.064, 0.051, 0.049,
and 0.047.
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Why Benford got a Law, and Newcomb did not

Benford gave much more data, and provided more mathematical
arguments, in support of his Law of Anomalous Numbers, than Newcomb
did in 1881.

Benford’s paper was published in 1938 in a journal of rather
limited circulation and not usually read by mathematicians. It so
happened that it was immediately followed in the same issue by a
physics paper which became of some importance for secret
nuclear work during World War II. That is why Benford’s paper
caught the attention of physicists in the early 1940’s and was
much discussed.
Jonothan L. Logan and Samuel A. Goudsmit, The First Digit Phenomenon,

Proceedings of the American Philosophical Society, 122(4) 193–197, 18

August (1978).
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Boring and Raimi uncover Newcomb’s work

Newcomb is briefly cited by Edwin G. Boring, The Logic of the Normal
Law of Error in Mental Measurement, The American Journal of
Psychology, 31(1) 1–33 (1920), but only about randomness of digits in
transcendental numbers.
Newcomb’s work seems to have been uncovered next by Ralph A. Raimi,
The first digit problem, American Mathematical Monthly, 83(7)
521–538, August 1976, 95 years later. Raimi wrote:

This assertion, whatever it may mean, will be called Benford’s
Law because it has been thought by many writers to have
originated with the General Electric Company physicist Frank
Benford. . . . There is ample precedent for naming laws and
theorems for persons other than their discoverers, else half of
analysis would be named after Euler. Besides, even Newcomb
implied that the observation giving rise to the Benford law was
an old one in his day. One would hate to change the name of the
law now only to find later that another change was called for.
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Benford’s Law for first digits

The frequency of the first digit [in measured data] follows closely the
logarithmic relation:

Fa = log10(
a + 1

a
), Benford’s original,

= log10(1 + 1/a), modern form.

Here, a is a nonzero leading decimal digit 1, 2, . . . , 9.
Benford’s leading-digit frequencies are identical to those in Newcomb’s
table: 0.301, 0.176, 0.125, 0.097, 0.079, 0.067, 0.058, 0.051, and 0.046.
The partial sums produce cumulative frequencies given by

Ca = log10(1 + a)

with these approximate values: 0.301, 0.477, 0.602, 0.699, 0.778, 0.845,
0.903, 0.954, and 1. Thus, 60% start with 1, 2, or 3.
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Benford’s Law for second digits

For a number beginning with decimal digits ab · · ·

Fb =
log10(

ab+1
ab )

log10(
a+1
a )

Here, b may be any of 0, 1, 2, . . . , 9.

Summed over all possible leading digits, the second-digit frequencies are
0.120, 0.114, 0.109, 0.104, 0.100, 0.097, 0.093, 0.090, 0.088, and 0.085.

In some cases, second-digit data have proved more useful than first-digit
data, and have been used for examining election results for evidence of
fraud (e.g., Argentina, Germany, Iran, Puerto Rico, USA, Venezuela).
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Benford’s Law pictorially
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Benford’s Law for arbitrary digits

For a number beginning with decimal digits abc · · · opq · · · ,

log(1 + x) ≈ (x − x2/2 + x3/3− x4/4 + · · · ), Taylor series,

log10(1 + x) ≈ (x − x2/2 + x3/3− x4/4 + · · · )/ log(10),

Fq =
log10(

abc ···opq+1
abc ···opq )

log10(
abc ···op+1
abc ···op )

=
log10(1 +

1
abc ···opq )

log10(1 +
1

abc ···op )
≈ abc · · · op

abc · · · opq

→ 1/10, for increasing q.

For example, if abcdefgh = 12345678, then

F9 =
log10(

123456789+1
123456789 )

log10(
12345678+1
12345678 )

≈ 0.099 999 996 354 . . .

Thus, after the first few leading digits, there is little difference in digit
frequencies.
Computational note: use log1p(x) instead of log(1 + x).
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Benford’s Law and percentage growth

Consider a company with $1,000,000 revenues:

Leading digit of 1: income increases by 100% to $2,000,000.

Leading digit of 2: income increases by 50% to $3,000,000.

Leading digit of 3: income increases by 33% to $4,000,000.

Leading digit of 4: income increases by 25% to $5,000,000.

. . .

Leading digit of 9: income increases by 11% to $10,000,000.

Suggestion: If percentage growth is roughly constant, then smaller leading
digits should be more common.
Growth is more likely to be geometric than arithmetic.
Frequencies decrease [0.353, 0.177, 0.118, 0.088, 0.071, 0.059, 0.050,
0.044, and 0.039] but do not match Benford’s Law.
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Benford’s Law: two observations

Benford’s ‘law of first digits’ has a history over very many
decades and has produced a literature which is remarkable in
that it shows a lack of understanding that the law is fundamental
and general rather than specific to the properties of a particular
data set.
B. K. Jones, Logarithmic distributions in reliability analysis,

Microelectronics Reliability 42(4–5) 779–786 (2002).

Wallace (2002) suggests that if the mean of a particular set of
numbers is larger than the median and the skewness value is
positive, the data set likely follows a Benford distribution. It
follows that the larger the ratio of the mean divided by the
median, the more closely the set will follow Benford’s Law.
C. Durtschi et al, The Effective Use of Benford’s Law to Assist in

Detecting Fraud in Accounting Data, Journal of Forensic Accounting 5(1)

17–34 (2004).
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Benford’s Law and mixed distributions

If distributions are selected at random (in any “unbiased way”)
and random samples are take from these distributions, then the
significant-digit frequencies of the combined sample will converge
to Benford’s distribution, even though the individual distributions
selected may not closely follow the law.
Theodore P. Hill, The First Digit Phenomenon, American Scientist, 86(4)

358–363 July / August (1998).
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Benford’s Law in other number bases

If Benford’s Law holds for decimal numbers, then it also holds for other
number bases, provided that those bases are not huge. Just change 10 to
the base b in the logarithms in the digit-frequency formulas.
For example,

Digit 0 1 2 3 4 5 6 7
Base b = 2

Fa 1.000
Fb 0.585 0.415

Base b = 4
Fa 0.500 0.292 0.208
Fb 0.304 0.261 0.230 0.206

Base b = 8
Fa 0.333 0.195 0.138 0.107 0.088 0.074 0.064
Fb 0.151 0.141 0.133 0.126 0.120 0.115 0.110 0.105

See Theodore Hill, Base-invariance implies Benford’s Law,
Proceedings of the American Mathematical Society 123(3) 887–895,
March 1995.
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Benford’s Law observed in real data

Digit 0 1 2 3 4 5 6 7 8 9
1990 US Census data (5148 values)

Fa 0.298 0.215 0.113 0.082 0.098 0.056 0.055 0.034 0.049
Fb 0.166 0.090 0.096 0.081 0.100 0.122 0.076 0.073 0.066 0.130

Atomic weights (110 values)
Fa 0.391 0.309 0.045 0.036 0.055 0.036 0.036 0.036 0.055
Fb 0.173 0.045 0.109 0.100 0.145 0.145 0.055 0.055 0.091 0.082

Country areas (1505 values)
Fa 0.312 0.275 0.100 0.067 0.058 0.062 0.046 0.029 0.050
Fb 0.167 0.221 0.092 0.092 0.062 0.067 0.075 0.067 0.083 0.075

Country population (163 values)
Fa 0.301 0.202 0.092 0.135 0.055 0.067 0.055 0.037 0.055
Fb 0.147 0.153 0.110 0.098 0.098 0.123 0.086 0.043 0.049 0.092

Infant mortality (208 values)
Fa 0.361 0.293 0.043 0.072 0.062 0.087 0.038 0.014 0.029
Fb 0.303 0.139 0.077 0.058 0.077 0.077 0.106 0.067 0.043 0.053

IBM 2010 annual financial report (6126 values)
Fa 0.333 0.160 0.163 0.086 0.068 0.053 0.047 0.045 0.046
Fb 0.172 0.169 0.096 0.084 0.085 0.095 0.079 0.074 0.079 0.068
Fibonacci numbers: f(n) = f(n − 1) + f(n − 2); f(2) = f(1) = 1 (9994 values)
Fa 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046
Fb 0.120 0.114 0.109 0.105 0.100 0.097 0.094 0.090 0.088 0.085
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When does Benford’s Law apply?

Despite 130+ years since Newcomb’s discovery, the mathematical
conditions for, and derivation of, Benford’s Law remain unsettled: see
Arno Berger and Theodore P. Hill, Benford’s law strikes back: no
simple explanation in sight for mathematical gem, The Mathematical
Intelligencer, 33(1) 85–91 (2011).
There is general agreement that the law applies to numbers whose
distribution is scale invariant: if changing units of measure leaves the
number distribution unchanged, then Benford’s Law holds.
[Roger S. Pinkham, On the Distribution of First Significant Digits,
Annals of Mathematical Statistics, 32(4) 1223–1230, December (1961)]
Thus, we can

do accounting in dollars, euros, pesos, ruan, rubles, rupees, yen, . . . ;

measure distances in metric or nonmetric units;

measure areas in square furlongs, or square parsecs, or . . . ;

count people, couples, families, arms, fingers, toes, . . . .
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When does Benford’s Law apply? [continued]

The numbers in many mathematical sequences and physical distributions
obey Benford’s Law exactly, or at least closely, including:

geometric sequences, and asymptotically-geometric sequences, like the
Fibonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . ), and
also the Lucas numbers (2, 1, 3, 4, 7, 11, 18, 29, 47, 76, . . . ) which
obey L(n) = L(n− 1) + L(n− 2), with L(0) = 2 and L(1) = 1;

iterations like x ← 3x + 1, starting with x = random number,

powers of integers;

logarithms of uniformly-distributed random numbers;

prime numbers;

reciprocals of all of the above;

reciprocals of Riemann zeta function zeros;

finite-state Markov chains;

Boltzmann–Gibbs and Fermi–Dirac distributions (approximate), and
Bose–Einstein distributions (exact).
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When is Benford’s Law inapplicable?

Sequences for which Benford’s Law does not hold include:

arithmetic sequences.

random numbers from most common distributions;

digit subsets of irrational and transcendental numbers;

US telephone numbers (limited prefixes, leading digit never 1, last
four digits all used);

bounded sequences with restricted leading digits (hours of day; days
of week, month, or year; house numbers; human ages (and heights
and weights); . . . )
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Where do Benford’s Law publications appear?

About 820 publications are listed in
http://www.math.utah.edu/pub/tex/bib/benfords-law.html

and about 740 are at
http://www.benfordonline.net/

Benford’s Law articles appear in almost 350 journals in these fields:

accounting earthquake detection medicine
aerobiology economics networking
auditing electoral studies neuroscience
astronomy engineering nuclear engineering
bible studies finance nuclear science
biology forensics operations research
botany gambling physics
business geography probability
chaos theory geophysics psychology
chemistry human resources signal processing
computer science imaging science simulation
conflict resolution library science statistics
criminology marketing stock-market trading
demographics mathematics volcanology
drug design

Nelson H. F. Beebe (University of Utah) Benford’s Law 20 February 2013 23 / 35



Benford’s Law in accounting

Fraud and deception are common when money or politics are involved.
However, many who practice in that area are unaware of Benford’s Law.
Their cooked data may differ sufficiently from the distribution predicted by
Benford’s Law that their crimes can be detected.

Several tax authorities now use Benford’s Law tests in their auditing
software to find tax cheats.

Fraud in numerical research data is sometimes suspected, and Benford’s
Law may help detect it: see John P. A. Ioannidis, Why Most Published
Research Findings Are False, PLoS Medicine, 2(8) 696–701, August
(2005).

However, be sure first that Benford’s Law is applicable, and that your
statistics are good: see Andreas Diekmann and Ben Jann, Benford’s Law
and Fraud Detection: Facts and Legends, German Economic Review,
11(3) 397–401, August (2010).
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A simple test of fraud

A 200-coin-flips experiment should produce six consecutive heads or tails
with high probability, but few humans would generate such data.

hoc> for (k = 1; k <= 200; ++k) printf("%d", randint(0,1))

Three experiments produce (with zeros changed to dots):

...1.111.111..1.1.1.1111...1.1.11..1111...1.1.1.1.

.1.....1..11......111.111.1....11..1.1.11..11..1..

11.1..1.11..1....1...1111111.11....1...1....1.1.11

1.1..11111111...111.1....11.111...1....11..1..1111

1.1.1.1.11...1....1.11111......1..1.1...1.....1..1

11..1.1..1.1..1.11.11.1.11......1.1.1.1...1...1.11

..11111111..1.11....1111....1...1111.1.11..11.1...

11111.11111111....1..11111.1.11..11....1.1..1...1.

.11....1111.11.111.11.11.1...1.1111.111..11..1....

111....11.1..11..1..1.11...1...1111.111......11.11

.1.1111...1.111.111.111.11..1..1..111.11.1111...11

..11.1..1..111..11.1..1.11..11.11.1..111111..1.1..
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Benford’s Law and the 2011 Greek debt crisis

See Bernhard Rauch et al., Fact and Fiction in EU-Governmental
Economic Data, German Economic Review 12(3) 243–255, August 2011,
and Hans Christian Müller, How an arcane statistical law could have
prevented the Greek disaster :

http://economicsintelligence.com/2011/07/28/
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How to generate data in Benford’s Law distribution?

If a simulation involves dimensioned data whose distribution should be
scale invariant, then generate starting values from

10
(random number uniform on [a, b])
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Other distributions

Benford’s Law has received wide interest and applications, but not all data
conform to it.
We look briefly at four other important distributions that model real-world
data.
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Stigler’s Law

In unpublished notes of 1945, and first presented at a 1975 talk at the
University of Chicago, George J. Stigler (1982 Sveriges Riksbank Prize in
Economic Sciences in Memory of Alfred Nobel) proposed an alternative
distribution of leading digits arising from a more complex formula:

Fd =
1

9
(d ln(d)− (d + 1) ln(d + 1) + (1 +

10

9
ln(10)))

1 2 3 4 5 6 7 8 9
Benford 0.3010 0.1761 0.1249 0.0969 0.0792 0.0669 0.0580 0.0512 0.0458
Stigler 0.2413 0.1832 0.1455 0.1174 0.0950 0.0764 0.0605 0.0465 0.0342

See Joanne Lee, Wendy K. Tam Cho, and George G. Judge, Stigler’s
approach to recovering the distribution of first significant digits in
natural data sets, Statistics & Probability Letters, 80(2) 82–88, 15
January (2010).
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Pareto distribution

Italian economist and mathematician Vilfredo Federico Pareto
(1848–1923) introduced the 80–20 rule in economics (80% of the wealth is
owned by 20% of the people, which was true at the time in Italy, and
found to be similar in other countries).
He developed the Pareto distribution, in which a random variable X has
the property that the probability that it is greater than some number x is
given by

Pr(X > x) =

{
(xm/x)α, for xm ≤ x,

1, otherwise.

The positive value xm is a cutoff, and as α→ ∞, the Pareto distribution
approaches a Dirac delta function, δ(x − xm). When this models the
distribution of wealth, the exponent α is called the Pareto index.
Teaser: See online biographies for the relation of Pareto’s economic
models to the rise of Fascism in Italy in the 1920s.
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Pareto distributions pictorially
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Zipf’s law

In 1932, American linguist George Kingsley Zipf (1902–1950) developed
a rule that has become known as Zipf’s Law:

If S is some stochastic (random) variable, the probability that S
exceeds s is proportional to 1/s.

The variable S might be, for example, the population of a city (small cities
are more numerous than large ones). See the December 2011 National
Geographic for a story on the dramatic growth of large cities around the
world.

Zipf’s Law is a special case of the Pareto distribution.

See
http://www.nslij-genetics.org/wli/zipf/

for an online bibliography.

Nelson H. F. Beebe (University of Utah) Benford’s Law 20 February 2013 32 / 35



Heaps’ law

In a 1978 book, Information retrieval, computational and theoretical
aspects, Harold Stanley Heaps made an empirical observation from
linguistics that the proportion of words from a vocabulary grows
exponentially with the number of words in the text of documents:

VR(n) = Knβ.

Here, n is the text size, and K and β are empirical parameters, and for
human languages, β ≈ 0.4 to 0.6.
Conclusion: if β < 1, then increasing n (taking larger and larger samples
of text) results in diminishing returns. It is hard to find large enough text
samples that include all, or even most, of the words in the vocabulary.

Consider what Heaps’ Law means for Web searches and for database
retrievals . . .
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How to learn more

Many of the important papers on the distributions presented in this talk
can be found in

http://www.math.utah.edu/pub/tex/bib/benfords-law.html

Of particular note is the survey by Mark E. J. Newman, Power laws,
Pareto distributions and Zipf’s law, Contemporary Physics, 46(5)
323–351, September (2005),

http://dx.doi.org/10.1080/00107510500052444

Mathematical details about the current state of Benford’s Law research
are given by Arno Berger and Theodore P. Hill, A basic theory of
Benford’s Law, Probabability Surveys 8 1–126 (2011),

http://dx.doi.org/10.1214/11-PS175
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How to learn more [continued]
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