
A projective variety over \(k \) is obtained from a \(\mathbb{Z} \)-graded \(k \)-algebra domain \(A \) (via the functor \(\text{maxproj} \)) analogously to the realization of an affine variety from an \(k \)-algebra (ungraded) domain \(A \) (via the functor \(\text{maxspec} \)). The key difference is that unlike the affine case, in which the domain is recovered from the regular functions, the only regular functions on a projective variety are the constants.

Definition 4.1. As a set, projective space \(\mathbb{P}^n_k \) is the locus of lines through \(0 \in k^{n+1} \).

Definition 4.2. The polynomial ring graded by degree:

\[
S_\bullet = \bigoplus_{d=0}^{\infty} k[x_0, \ldots, x_n]_d
\]

is defined by

\[
S_d = \left\{ \sum_{|I|=d} c_I x_I \mid x_I = x_0^{i_0} \cdots x_n^{i_n}, c_I \in k \right\}
\]

i.e. \(S_d \) is the vector space of homogeneous polynomials of degree \(d \), with:

\[
S_d \cdot S_e \subset S_{d+e}
\]

Definition 4.3. An ideal \(I \subset S_\bullet \) is homogeneous if:

\[
I = \bigoplus_{d=0}^{\infty} I \cap k[x_0, \ldots, x_n]_d,
\]

and in that case we let \(I_d = I \cap k[x_0, \ldots, x_n]_d \)

i.e. \(I \) is generated by (finitely many!) homogeneous polynomials, so that

\[
f = f_0 + \cdots + f_d \in I \leftrightarrow f_e \in I_e \text{ for all } e
\]

The quotient by a homogeneous ideal is a graded ring:

\[
S_\bullet / I = A_\bullet \text{ with } A_d = S_d / I_d \text{ and } A_d \cdot A_e \subset A_{d+e}
\]

Example. (a) The irrelevant homogeneous maximal ideal in \(S_\bullet \) is:

\[
S_+ = \bigoplus_{d=1}^{\infty} k[x_0, \ldots, x_n]_d = \langle x_0, \ldots, x_n \rangle
\]

This ideal contains all homogeneous ideals in \(S_\bullet \) other than the ideal \(\langle 1 \rangle \).

(b) If \(X \subset \mathbb{P}^n_k \), then the affine cone over \(X \) is:

\[
C(X) = \{ (a_0, \ldots, a_n) \in k^{n+1} \mid k \cdot (a_0, \ldots, a_n) \in X \} \cup \{ (0, \ldots, 0) \}
\]

The ideal \(I(X) := I(C(X)) \subset S_\bullet \) is a homogeneous ideal (if \(k \) is infinite), and:

\[
k[X]_\bullet = k[x_0, \ldots, x_n]_\bullet / I
\]

(with this convention, \(I(\emptyset) = S_+ \), though one could argue for \(I(\emptyset) = \langle 1 \rangle \))

(c) For a homogeneous ideal \(I \subset S_+ \),

\[
X(I) = C(X) \subset k^{n+1}
\]

is an affine cone over some \(X \subset \mathbb{P}^n_k \) and we let \(X := X(I) \subset \mathbb{P}^n_k \) be the associated algebraic subset of \(\mathbb{P}^n_k \).

This sets up a version of the Nullstellensatz for radical homogeneous ideals:
The Projective Nullstellensatz. The radical homogeneous ideals $I \subset S_+$ are in bijection with the algebraic subsets $X = X(I) \subset \mathbb{P}^n_k$ via the mappings X and I, with the prime ideals corresponding to irreducible algebraic sets and the maximal prime ideals properly contained in S_+ corresponding to the points $x \in \mathbb{P}^n_k$ via:

$$m_x = \langle a_jx_i - a_ix_j \rangle \text{ for } x = k \cdot (a_0, \ldots, a_n)$$

Proof. This follows from the ordinary Nullstellensatz applied to affine cones and the fact that $\text{rad}(I)$ is a homogeneous ideal when I is a homogeneous ideal.

Projective Coordinates. We will write $x \in \mathbb{P}^n_k$ in coordinates as the ratio:

$$(a_0 : \cdots : a_n)$$

with the understanding that $(a_0 : \cdots : a_n) = (\lambda a_0 : \cdots : \lambda a_n)$ for $\lambda \in k^*$.

Remark. If $F \in S_d$ is homogeneous of degree d, then:

$$F(\lambda a_0 : \ldots : \lambda a_n) = \lambda^d F(a_0 : \cdots : a_n)$$

so although the value $F(x)$ is not well-defined, it does make sense to say $F(x) = 0$. When F is not homogeneous, even this statement is not well-defined.

Example. In the projective space \mathbb{P}^n_k of $n \times n$ matrices,

$X(\Delta)$ is the locus (hypersurface) of singular matrices where $\Delta \in S_n$ is the determinant polynomial. The complement is $\text{PGL}(n, k)$.

The following Lemma is useful.

Lemma 4.4. For a homogeneous ideal $I \subset S_+$,

$$X(I) = \emptyset \Leftrightarrow S_+ \subseteq \text{rad}(I) \Leftrightarrow S_d \subset X(I) \text{ for some } d$$

Proof. The first equivalence is immediate, and if $S_+ \subseteq \text{rad}(I)$, then

$$x_i^{d_i} \in I \text{ for some } d_0, \ldots, d_n$$

and then $S_d \subset I$ for $d > (d_0 + \cdots + d_n) - n$. The converse is clear. \(\square\)

We now enlarge our stable of \mathbb{Z}-graded k-algebra domains to include:

$$k[X]_* = S_*/P$$

for homogeneous prime ideals $P \subset S_+$

the homogeneous coordinate rings of irreducible subsets of \mathbb{P}^n_k. These rings are:

- \mathbb{Z}-graded k-algebra integral domains, with $k[X]_0 = k$
- finitely generated in degree one by a basis x_1, \ldots, x_n of $k[X]_1$.

We now construct a prevariety (X, O_X) out of each such graded k-algebra A_*. The Set X is the collection of maximal prime ideals $m_x \subset A_+$. The Topology is the Zariski topology, in which the algebraic sets:

$$X(I) = \{m_x \mid I \subset m_x\}$$

are the closed sets, for (radical) homogeneous ideals $I \subset A_+$. The Field of Rational Functions is:

$$k(X) = \left\{ \frac{F}{G} \mid F, G \in A_d \text{ and } G \neq 0 \right\} \subset k(A)$$

This is a subfield of $k(A)$. The elements of $k(X)$ are homogeneous of degree zero, which makes them (rational) functions on X.

Concretely, a choice of basis \(x_0, ..., x_n \) of \(A_1 \) identifies \(A_\bullet = k[x_0, ..., x_n]/P \) and:

\[
\text{maxproj}(A_\bullet) = X = X(P) \subset \mathbb{P}^n_k
\]

This is an irreducible Zariski topological space by the Projective Nullstellensatz. For \(x = (a_0 : ... : a_n) \in X \), and \(\phi \in k(X) \),

\[
\phi(a_0, ..., a_n) = \frac{F(a_0, ..., a_n)}{G(a_0, ..., a_n)} = \frac{\lambda^d F(a_0, ..., a_n)}{\lambda^2 G(a_0, ..., a_n)} = \phi(\lambda a_0, ..., \lambda a_n)
\]

is well-defined, provided that \(G(a_0, ..., a_n) \neq 0 \). More abstractly,

Definition 4.5. A rational function \(\phi \in k(X) \) is regular at \(x \in X \) if

\[
\phi = \frac{F}{G} \quad \text{with} \quad G \notin m_x
\]

The rational functions that are regular at \(x \in X \) are elements of \(A_{(m_x)} \subset k(X) \), a local ring with residue field \(k \), in which the value \(\phi(x) \) is taken. The assignment:

\[
\mathcal{O}_X(U) = \{ \phi \in k(X) \mid \phi \text{ is regular at all points of } U \}
\]

defines the sheaf \(\mathcal{O}_X \) and the sheaved (Noetherian, irreducible) space \(\text{maxproj}(A_\bullet) \).

In contrast to Proposition 2.7, we have:

Proposition 4.6. \(\mathcal{O}_X(X) = k \) when \((X, \mathcal{O}_X) = \text{maxproj}(A_\bullet) \).

Proof. Let \(\phi \in \mathcal{O}_X(X) \) and let \(I = \langle G \in A_d \mid G\phi \in A_d \rangle \) be the homogeneous ideal of denominators of \(I \). By assumption \(X(I) \) is empty, and if we could conclude (as in the affine case) that \(1 \in I \), we’d have \(\phi \in A_0 = k \). Instead, we have:

\[
A_d \subset I \quad \text{for some } d \quad \text{(Lemma 4.4)}
\]

In other words, \(G\phi \in A_d \) for all \(G \in A_d \). This has the odd consequence that:

\[
G\phi^2 = (G\phi)\phi \in A_d, \quad G\phi^3 = (G\phi^2)\phi \in A_d, \text{etc}
\]

which gives an increasing chain of submodules:

\[
A_\bullet \subset A_\bullet + \phi A_\bullet \subset A_\bullet + \phi A_\bullet + \phi^2 A_\bullet \subset \cdots \subset G^{-1} A_\bullet
\]

of a principal graded \(A \)-module. Since \(A_\bullet \) is Noetherian, the chain stabilizes, and:

\[
\phi^n = f_0 + f_1 \phi + \cdots + f_{n-1} \phi^{n-1}
\]

for elements \(f_i \in A_\bullet \) in degree 0, this is an identity \(\phi^n = c_0 + c_1 \phi + \cdots + c_{n-1} \phi^{n-1} \) with coefficients in \(k = A_0 \), and then since \(k = \bar{k} \), it follows that \(\phi \in k, \) as desired. \(\square \)

So \(X \) isn’t affine (unless it is a point). But it is covered by affine varieties:

Proposition 4.7. Each sheaved space \((X, \mathcal{O}_X) = \text{maxproj}(A_\bullet) \) is a prevariety.

Proof. Let \(G \in A_d \) be a non-zero element of positive degree \(d \). Then

\[
A_{(G)} = \left\{ \frac{F}{G^m} \mid \deg(F) = md \right\} \subset k(X)
\]

is a \(k \)-algebra domain, generated by \(y_i/G \), where \(y_i \) are a basis for \(A_d \). Moreover,

\[
k(A_{(G)}) = k(X)
\]

and \((U_G, \mathcal{O}_X|_{U_G}) \) is isomorphic to \(\text{maxspec}(A_{(G)}) \), where \(U_G = X - X(G) \). In this case, we can conclude that \(G^m \) is in the ideal of denominators of each \(\phi \in \mathcal{O}_X(U_G) \) by the Projective Nullstellensatz, as in Proposition 2.7. \(\square \)
Example. The open cover of \mathbb{P}_k^n by $n + 1$ affine spaces $U_0, ..., U_n$.

For each of the coordinate functions $x_0, ..., x_n \in k[x_0, ..., x_n]$,

$$U_{x_i} = \text{maxspec}(k[x_0, ..., x_n](x_i)) = \text{maxspec}(k[\frac{x_0}{x_i}, ..., \frac{x_n}{x_i}])$$

is the affine n space of points:

$$U_{x_i} = \{(a_0 : ... : a_n) \mid a_i \neq 0\} = \{(\frac{a_0}{a_i}, ..., 1, ..., \frac{a_n}{a_i})\}$$

Notice in passing that, $\text{PGL}(n, k)$ is an affine variety, by this Proposition.

A morphism from a prevariety X to affine space \mathbb{A}_k^n is given by regular functions:

$$g_1 = f^*(x_1), ..., g_n = f^*(x_n) \in \mathcal{O}_X(X)$$

via $f(x) = (g_1(x), ..., g_n(x))$. In particular, the only morphisms from a projective prevariety (or any prevariety with $\mathcal{O}_X(X) = k$) to \mathbb{A}_k^n are the constant maps.

But what about morphisms from X to \mathbb{P}_k^n? Is there a way to characterize these? The key is rational functions. Each prevariety X has its rational function field:

$$k(X) = \lim \mathcal{O}_X(U)$$

When $X = \text{maxspec}(A)$ this is $k(A)$ and when $X = \text{maxproj}(A)$, it is $k(X)$. Moreover, if $U \subset X$ is any open subset, then $k(U) = k(X)$.

Definition 4.8. Rational functions $\phi_0, ..., \phi_n \in k(X)$ determine a rational map:

$$f : X \dashashrightarrow \mathbb{P}_k^n; f(x) = (\phi_0(x) : \cdots : \phi_n(x))$$

The domain of the rational map f is larger than one might expect, since:

$$(\phi_0, ..., \phi_n) \text{ and } (\phi \cdot \phi_0, ..., \phi \cdot \phi_n)$$

determine the same rational map to \mathbb{P}_k^n whenever $\phi \in k(X)^*$. This means that one may be able to expand the domain not just by different forms of $\phi_i = F_i/G_i$, but also by multiplying by convenient rational functions ϕ.

Example. (a) The rational projection map $\pi : \mathbb{P}_k^2 \dashashrightarrow \mathbb{P}_k^1$ given by:

$$\left(\frac{x_1}{x_0} : \frac{x_2}{x_0}\right) = (1 : \frac{x_2}{x_1}) = (\frac{x_1}{x_2} : 1)$$

is well-defined on the open set $\mathbb{P}_k^2 - \{(1 : 0 : 0)\}$ but it cannot be extended further. When restricted to the projective line $X(x_1) \subset \mathbb{P}_k^2$, we get $\pi(a_0 : 0 : a_1) = (0 : 1)$ and when restricted to $X(x_2)$, we get $\pi(a_0 : a_1 : 0) = (0 : 1)$, so there is no way to give a value to $\pi(1 : 0 : 0)$ to extend π to a continuous map. In fact, when restricted to each line through $(1 : 0 : 0)$, the projection map is a different constant.

(b) When π is restricted to the conic $C = X(x_1^2 - x_0x_2) \subset \mathbb{P}_k^2$, however:

$$\pi|_C = (1 : \frac{x_2}{x_1}) = (\frac{x_1}{x_2} : 1) = (1 : \frac{x_1}{x_0})$$

with the last form of the map coming from the identity $x_2/x_1 = x_1/x_0$ in $k(C)$. Moreover, this rational map, defined everywhere, inverts $i : \mathbb{P}_k^1 \rightarrow C$ given by:

$$i = (1 : \frac{x_1}{x_0} : (\frac{x_1}{x_0})^2) = (\frac{x_0}{x_1}^2 : \frac{x_0}{x_1} : 1)$$

Proposition 4.9. A morphism $f : (X, \mathcal{O}_X) \rightarrow \mathbb{P}_k^n$ in the category of sheaved spaces is the same as a rational map that is defined at all points of X.
Corollary 4.10. \(\mathbb{P}_k^1 \) and \(C \) from Example (b) above are isomorphic prevarieties. On the other hand, these two projective prevarieties come from the graded rings:

\[A_1 = \mathbb{k}[x_0, x_1] \quad \text{and} \quad A_{2*} = \mathbb{k}[x_0^2, x_0 x_1, x_1^2] \]

Exercise. \(\text{maxproj}(A_1) \) and \(\text{maxproj}(A_{2*}) \) are isomorphic varieties for all \(d > 0 \).

Proposition 4.11. Products of projective prevarieties are projective.

Proof. It suffices to prove that \(\mathbb{P}_k^n \times \mathbb{P}_k^m \) is a projective prevariety, i.e. to locate this prevariety as a closed, irreducible subset of some \(\mathbb{P}_k^n \). Here it is:

\[X = \{ \text{rank one } m \times n \text{ matrices} \} \subset \mathbb{P}_k^{(n+1)(m+1) - 1} \]

with projective coordinates \((a_{ij})\) for \(i = 0, ..., n \) and \(j = 0, ..., m \) and

\[X = X(x_{ij} x_{kl} - x_{il} x_{kj}) \text{ (the vanishing of the two by two minors)} \]

Then \(X \) is set-theoretically equal to \(\mathbb{P}_k^n \times \mathbb{P}_k^m \) via the Segre embedding

\[((a_0 : ... : a_n), (b_0 : ... : b_m)) \mapsto (a_i b_j) \]

and the Cartesian projections are realized by restricting the rational projections:

\[\pi^{\mathbb{P}_k^n} = (x_{i0} / x_{ij} : x_{20} / x_{ij} : ... : x_{n0} / x_{ij}) \quad \text{and} \quad \pi^{\mathbb{P}_k^m} = (x_{01} / x_{ij} : ... : x_{0m} / x_{ij}) \]

to \(X \) (for any choice of \(x_{ij} \)), where they are defined everywhere, hence morphisms. On each of the open affines \(U_i \times U_j = \mathbb{A}_k^n \times \mathbb{A}_k^m \), this agrees with the product of affine varieties, and so \((X, \pi^{\mathbb{P}_k^n}, \pi^{\mathbb{P}_k^m})\) is the universal triple.

Corollary 4.12. Projective prevarieties are varieties.

Proof. The diagonal in \(\mathbb{P}_k^n \times \mathbb{P}_k^n \) is the closed subset \(X(\{ x_{ij} - x_{ji} \}) \subset X \). It follows that quasi-projective prevarieties \(U \subset \text{maxproj}(A_1) \) are also varieties.

This choice of an arbitrary \(x_{ij} \) in the proof of Proposition 4.11 points to a useful way to think about morphisms from a projective variety \(X \) to \(\mathbb{P}_k^n \). If \(\phi_0, ..., \phi_n \) are rational functions defining a morphism \(\phi \), then we may choose \(G \in A_d \) for some (large) \(d \) so that \(G \phi_i = F_i \in A_d \) for all \(i \). We may then write \(f \) as:

\[f(x) = (F_0(x) : ... : F_n(x)) \]

and although the values of each \(F_i(x) \) individually do not make sense, the ratio does give a well-defined point of projective space, provided that some \(F_i(x) \neq 0 \). Thus, from this point of view, the projection from \((1 : 0 : 0)\):

\[\pi : \mathbb{P}_k^2 - - > \mathbb{P}_k^1 \]

can be written as \(\pi (x_0 : x_1 : x_2) = (x_1 : x_2) \)

and the isomorphism from \(\mathbb{P}_k^1 \) to the conic \(C \) can be written as:

\[i : \mathbb{P}_k^1 \rightarrow \mathbb{P}_k^2; \ i(x_0 : x_1) = (x_0^2 : x_0 x_1 : x_1^2) \]
We finish this section with the “completion” of an affine variety. Let
\[A = k[x_1, ..., x_n]/P \] with \(X = X(P) \subset \mathbb{A}^n_k \).

Then we may homogenize the ideal \(P \) by homogenizing its elements:
\[P_{\text{hom}} = \langle f_{\text{hom}} = f(x_1/x_0, ..., x_n/x_0) \cdot x_0^d \mid f \in P, d = \deg(f) \rangle \subset k[x_0, ..., x_n] \]
into generators of \(P_{\text{hom}} \). This is a homogeneous prime ideal defining:
\[Y = X(P_{\text{hom}}) \subset \mathbb{P}^n_k \]
satisfying \(Y \cap U_0 = X \).

This is the Zariski closure of \(Y_0 \cap X \subset U_0 \) as a subset of \(\mathbb{P}^n \). The main point is that this closure has an open cover by affine varieties \(Y_i = Y \cap U_i \) for all the other open affine space subsets \(U_i \subset \mathbb{P}^n \), allowing us to place each of the points in the closure of \(X \) in the interior of an open affine subvariety of \(Y \).

Example. By this prescription, the closure of the affine curve:
\[X = X(x_2^2 - (x_1^3 + Ax_1 + B)) \subset \mathbb{A}^2_k \]
in the projective plane \(\mathbb{P}^2_k \) is:
\[E = X(x_0x_2^2 - (x_1^3 + Ax_0x_2 + Bx_0^3)) \subset \mathbb{P}^2_k \]
which is obtained from \(X \) by adding the single point \((0 : 0 : 1) = E \cap X(x_0) \).

The two other affine spaces \(U_1, U_2 \subset \mathbb{P}^2_k \) intersect \(E \) in affine curves:
\[X_1 = X(x_0x_2^2 - (1 + Ax_0x_2^2 + Bx_0^3)) \]
and \(X_2 = X(x_1 - (x_1^3 + Ax_2 + Bx_0^3)) \)
and it is in \(X_2 \) that we may study the elliptic curve “near” the extra point.

Assignment 4.

1. Prove that the projection: \(\pi(x_0 : ... : x_n) = (x_0 : ... : x_m) \) is not defined at the points of \(\Lambda = X((x_{m+1}, ..., x_n)) \). (a) Show that this is the case by finding:
\[\pi^{-1}(a_0 : ... : a_m) \subset \mathbb{P}^n_k - \Lambda \] for each point \((a_0 : ... : a_m) \in \mathbb{P}^n_k \).

This is called the linear projection \(\pi_\Lambda : \mathbb{P}^n_k - \rightarrow \mathbb{P}^m_k \) from \(\Lambda \subset \mathbb{P}^n_k \).

(b) If \(Q = X(x_0x_3 - x_1x_2) \subset \mathbb{P}^3_k \), completely describe the projection:
\[\pi_{(0:0:0:1)}|Q : Q -\rightarrow \mathbb{P}^2_k \]
Does it extend across \((0 : 0 : 0 : 1) \in X(Q)\)? (c) On the other hand, describe:
\[\pi_\Lambda|Q : Q -\rightarrow \mathbb{P}^1_k \]
for \(\Lambda = \{(*:0:0)\} = X((x_2,x_3)) \) and show that this does extend across the points of \(\Lambda \) (as in Proposition 4.11.)

2. The \(d \)-uple embedding:
\[f_d : \mathbb{P}^n_k \rightarrow \mathbb{P}^{(n+d)}_d \]
is given by \(f_d(x_0 : ... : x_n) = (... : x_I : ...) \) over all the multi-indices \(I \) of degree \(d \).

(a) If \(n = 1 \), the image of the \(d \)-uple embedding is the rational normal curve:
\[C_d = \{(a_0^d : a_0^{d-1}a_1 : ... : a_1^d) \mid (a_0 : a_1) \in \mathbb{P}^1_k \} \]
corresponding to multi-indices \((d - i, i)\) generalizing the conic from Corollary 4.10.

Show that \(I(C_d) \) is generated by the \(2 \times 2 \) minors of the matrix:
\[
\begin{bmatrix}
 x_{(d,0)} & x_{(d-1,1)} & \cdots & x_{(1,d-1)} \\
 x_{(d-1,1)} & x_{(d-2,2)} & \cdots & x_{(0,d)}
\end{bmatrix}
\]
(b) If \(d = 2 \), the embedding \(f_2 : \mathbb{P}_k^n \rightarrow \mathbb{P}_k^{(n+2)−1} \) is the **Veronese embedding**. In this case, the monomials of degree 2 are all of the form \(x_i x_j \), and \(f_2 \) can be thought of as:

\[
f_2(a_0 : \ldots : a_n) = (... : a_i a_j : ...)
\]

whose coordinates can be arranged in a symmetric \(n + 1 \times n + 1 \) matrix \(A = (a_{i,j}) \). Show that the image is the rank one locus in symmetric all matrices \((x_{i,j}) \), and is therefore cut out by the quadratic equations of the principal \(2 \times 2 \) minors. Work out the explicit quadratic equations for the Veronese embedding of \(\mathbb{P}^2 \).

(c) In general, arrange the multi-indices in a convenient ordering to show that that \(d \)-uple embedding is an isomorphism from \(\mathbb{P}_k^n \) to its image via an appropriate inverse projective mapping.

3. The **Grassmannian** \(G(m, n) \) is the set of \(m \)-planes in \(k^n \) (e.g. \(G(1, n) = \mathbb{P}^n_k \)). Consider the rational map:

\[
\mathbb{P}({\text{Hom}}(k^m, k^n)) \dashrightarrow \mathbb{P}^{(n−1)}_m
\]
given by the \(m \times m \) **minors** of a matrix \(A \in \text{Hom}(k^m, k^n) \). Work out explicitly for the case \(m = 2 \) and \(n = 4 \) and convince yourself that the image is \(X(q) \subset \mathbb{P}^5_k \) for a suitable nonsingular (see Problem 5) quadratic polynomial. The image also can be interpreted as the set of indecomposable alternating tensors:

\[
v_1 \wedge \cdots \wedge v_m \text{ in } \wedge^m k^n
\]

4. (a) Prove Euler’s formula for homogeneous polynomials \(F \in k[x_0, \ldots, x_n]_d \).

\[
\sum_{i=0}^{n} x_i \frac{\partial F}{\partial x_i} = dF
\]

(b) The projective tangent plane \(T_p(X(F)) \subset \mathbb{P}^n_k \) to \(X(F) \) at \(p \in X(F) \) is:

\[
\sum_{i=0}^{n} x_i \frac{\partial F}{\partial x_i}(p) = 0
\]

provided that the gradient \(\nabla(F)(p) \neq 0 \).

The affine tangent plane to \(X(f) \) for \(f \in k[x_1, \ldots, x_n] \) vanishing at \((0, \ldots, 0)\) is:

\[
X(f_1) \text{ where } f = f_1 + f_2 + \cdots + f_d \text{ are the homogeneous terms of } f
\]

Show that if \(F(p) = 0 \) and \(p = (1 : 0 : \ldots : 0) \), then:

\[
T_p(X(F)) \cap U_0 \text{ is the affine tangent plane to } X(f) = X(F) \cap U_0 \text{ at } (0, \ldots, 0)
\]

and that if \(\nabla(F)(p) = 0 \), then \(f_1 = 0 \) for the polynomial \(f = F(1, x_1/x_0, \ldots, x_n/x_0) \).

Thus, \(p \in X(F) \) is a singular point (no tangent plane) if and only if \(\nabla(F)(p) = 0 \).

In particular, if \(k = \mathbb{C} \) and \(\nabla(F)(p) \neq 0 \), then \(X(F) \) is a complex manifold of dimension \(n \) in a Zariski open neighborhood of \(p \in X(F) \).

(c) Show that the elliptic curve \(X(y^2 - x^3 - Ax - B) \) is non-singular at the “point at infinity” and find its projective tangent line.

5. In the projective plane \(\mathbb{P}^2_k \), the simplest singularities are simple nodes and cusps. If \(f(x_1, x_2) = f_2 + f_3 + \cdots + f_d \) is singular at \((0, 0)\), then:

\[
f_2(x_1, x_2) = (a_1 x_1 - a_2 x_2)(b_1 x_1 - b_2 x_2)
\]
(we’re assuming \(k = \mathbb{F} \)), and then:

(i) \(X(F) \) has a simple node at \((1 : 0 : 0)\) if \((a_2 : a_1) \neq (b_2 : b_1) \in \mathbb{P}^1\), i.e. if the linear factors of \(f_2 \) define different lines through \((0,0)\).

(ii) \(X(F) \) has a simple cusp at \((1 : 0 : 0)\) if the linear factors of \(f_2 \) are dependent (but not zero).

Question. How do we interpret this in terms of the tangent **cone**:

\[
\sum_{i,j} x_i x_j \frac{\partial^2 F}{\partial x_i \partial x_j} = 0
\]

at \(p \in X(F) \) of a singular point of \(X(F) \subset \mathbb{P}^2_k \)?

5. A homogeneous **quadric** is a quadratic form:

\[
q = \sum_{i \leq j} c_{i,j} x_i x_j \in k[x_0, ..., x_n]_2
\]

which is identified with the symmetric matrix:

\[
Q = \begin{bmatrix}
 c_{0,0} & \frac{1}{2} c_{0,1} & \cdots & \frac{1}{2} c_{0,n} \\
 \frac{1}{2} c_{0,1} & c_{1,1} & \cdots & \frac{1}{2} c_{1,n} \\
 \vdots & \vdots & \ddots & \vdots \\
 \frac{1}{2} c_{0,n} & \frac{1}{2} c_{1,n} & \cdots & c_{n,n}
\end{bmatrix}
\]

so that

\[
q(x_0, ..., x_n) = \vec{x}^T Q \vec{x}
\]

for the column vector \(\vec{x} = \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \)

Prove that the singular locus of the **quadric hypersurface** \(X(q) \) is:

\[
\Lambda = \mathbb{P}(\ker(Q)) \subset \mathbb{P}^n_k
\]

so that in particular, \(X(q) \) is non-singular if and only if \(\det(Q) \neq 0 \).

Show (diagonalizing the quadric if like) that the projection from \(\Lambda \) realizes \(X(q) \) as the inverse image of a nonsingular quadric \(X(q_0) \) (closed up to include \(\Lambda \)) under the projection map:

\[
\pi_\Lambda : \mathbb{P}^n -\to \mathbb{P}(\text{im}(Q))
\]

This is called the **cone over the quadric** \(X(q_0) \subset \mathbb{P}(\text{im}(Q)) \).

6. Prove that the only automorphisms of \(\mathbb{P}^n_k \) (as projective varieties) are the natural (transitive) action of \(\text{PGL}(n,k) \). What are the automorphisms of a non-singular quadric \(Q \subset \mathbb{P}^n_k \)?