
Homework 1: Cauchy-Riemann equations, power series

Let Ω ⊂ C = R2 be a domain (connected open set).

Holomorphic functions.

1. Suppose f : Ω → C is holomorphic. Suppose that f ′(z0) ̸= 0 for
some z0 ∈ Ω. Show that for any v ∈ C with |v| = 1 there is a
sequence wn in the image of f converging to f(z0) so that wn ̸= f(z0)

and such that wn−f(z0)
|wn−f(z0)| → v. Thus wn converges to f(z0) from the

prescribed direction. By a change of coordinates you may assume that
z0 = f(z0) = 0. Note: Later we will see that f(z0) is contained in the
interior of the image of f .

2. Use Problem 1. to deduce that if the image of f is contained in a
smooth curve, e.g. a line or a circle, then f is constant.

Cauchy-Riemann equations.

3. Suppose ϕ, ψ : Ω → R are differentiable and satisfy Cauchy-Riemann
equations

∂ϕ

∂x
=
∂ψ

∂y
,

∂ϕ

∂y
= −∂ψ

∂x

Show that pairs of functions

(a) ϕ1 = ϕ2 − ψ2, ψ1 = 2ϕψ,

(b) ϕ2 = eϕ cosψ, ψ2 = eϕ sinψ,

(c) ϕ3 = −ψ, ψ3 = ϕ

also satisfy the Cauchy-Riemann equations. In each case represent the
holomorphic function fj = ϕj + iψj directly in terms of f = ϕ+ iψ.

4. A function u : Ω → R is called harmonic1 if u = Re(f) for some
holomorphic function f : Ω → C.

(a) Show that Im(f) is also harmonic when f is holomorphic.

(b) If u : Ω → R is harmonic, up to adding a constant there is a
unique v : Ω → R such that u+ iv is holomorphic.

1strictly speaking, being harmonic is a local property and the definition I am giving is
correct only when Ω is simply connected
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(c) Suppose that u : Ω → R is harmonic and has continuous second
partial derivatives (this is always true as we shall see later). Show
that u satisfies the Laplace equation

∆u :=
∂2u

∂x2
+
∂2u

∂y2
= 0

Power series.

5. Prove that ez+w = ezew for any z, w ∈ C.

6. Prove that sin2z + cos2z = 1 for any z ∈ C.

7. Prove that sin(z + w) = sin(z) cos(w) + cos(w) sin(z), z, w ∈ C.

8. Prove that cos(z + w) = cos(z) cos(w)− sin(z) sin(w), z, w ∈ C.

9. Show that
∑

n nz
n has radius of convergence 1 but does not converge

for any z on the unit circle.

10. Show that
∑

n z
n/n2 has radius of convergence 1 and converges for

every z on the unit circle (in fact, absolutely and uniformly on {|z| ≤
1}).

11. An arithmetic sequence is a sequence of integers of the form a, a +
d, a + 2d, · · · with d > 0 called the step. Show that N = {1, 2, 3, · · · }
cannot be partitioned into finitely many subsets each of which forms
an arithmetic sequence with pairwise distinct steps. Hint: Otherwise
write 1/(1 − z) as the sum of finitely many functions of the form
za/(1− zd).

Comment: In Problems 5-8 the intent is to manipulate the defining
power series, using the fact that they are absolutely convergent. In the next
few lectures an easier argument will emerge, based on the fact that if two
holomorphic functions defined on C agree on R then they agree everywhere.
Then Problem 6 is immediate, and for the others you can do it in two steps.
E.g. for Problem 5 first fix w ∈ R and argue that z 7→ ez+w and z 7→ ezew

are equal. Then repeat this with w ∈ C. There are other tricks too, e.g. the
trig formulas follow from Problem 5 and the Euler formula.

2



Abel’s theorem and convergence on the circle |z| = R.

The goal of the next exercise is to show that it is legitimate to plug in z = 1
in the power series

• log(1 + z) = z − z2/2 + z3/3− · · ·

• arctan z = z − z3/3 + z5/5− · · ·

even though the radius of convergence is 1, thus proving that

1− 1

2
+

1

3
− · · · = log 2

and

1− 1

3
+

1

5
− · · · = π/4

The key property is that the series happens to converge to something for
z = 1.

12. (a) Let a0, a1, · · · and b0, b1, · · · be two sequences of complex numbers
and set sn = a0+ a1+ · · ·+ an. Prove Abel’s summation by parts
for n ≥ 0, p ≥ 1:

n+p∑
k=n+1

akbk =

n+p∑
k=n+1

sk(bk − bk+1)− snbn+1 + sn+pbn+p+1

Notice the similarity with
∫
udv = uv −

∫
vdu.

(b) Now let
∑
anz

n be a power series with radius of convergence 1
and assume that

∑
an converges. Abel’s theorem states that con-

vergence of
∑
anz

n is uniform (though not necessarily absolute)
on any closed sector centered at 1 and contained in {|z| < 1}∪{1}.
In particular, the limiting function is continuous on the sector.
This justifies the validity of plugging in z = 1. Pictured is a
sector with bounding lines of slope ±1.

Prove Abel’s theorem. It might make it easier to assume the
sector is just [0, 1], which is sufficient for the examples.

Hint: First show that there is a constant M > 0 so that |1− z| ≤
M(1 − |z|) on the sector (e.g. M = 1 for the degenerate sector
[0, 1]). To simplify the situation, add a constant so that

∑
an = 0.

Take bn = zn in Abel’s summation. For any ϵ > 0 choose n
so that |sk| < ϵ for k ≥ n. Then estimate the main sum by
ϵ|1− z||z|n 1

1−|z| .

3



13. This might be called the anti-Abel’s theorem. Suppose a0 ≥ a1 ≥ a2 ≥
· · · → 0 and assume

∑
anz

n has radius of convergence 1. Example:
an = 1/n. Thus the series may not converge for z = 1. However, show
that it converges for any other z with |z| = 1. In fact, show that the
convergence is uniform on any set of the form {z | |z| ≤ 1, |1− z| ≥ δ}
for any δ > 0. Hint: Abel’s summation again, this time set it up so
that the ak from the summation is zk and bk is ak from the series
(sorry about the notational conflict).

14. Let z1, z2, · · · , zp be distinct points on the unit circle. Show that the
following power series with radius of convergence 1 diverges for z =
z1, z2, · · · , zp but converges at all other points on the unit circle:

∞∑
n=1

1

n

(
1

zn1
+

1

zn2
+ · · ·+ 1

znp

)
zn
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