Math 6510 - Homework 6

Due in class on 11/5/13

1. Let M_0, M_1 and N be differentiable manifolds and $f: M_0 \times M_1 \to N$ a smooth map. Then the map $F: M_0 \times TM_1 \to TN$ defined by $F(x_0, v) = (f_*(x_0, x_1))(0, v)$ is smooth where $v \in T_{x_1}M_1$. (You don't need to prove this but you should make sure that you know why its true!).

Let G be a Lie group and define $f: G \times G \to G$ by f(a, b) = ab. Then use the above fact to show that a left-invariant vector field is smooth by showing that F restricted to $G \times \{v\}$ is an embedding where $v \in T_{id}G$.

- 2. Let G be a Lie group and \mathfrak{g} its Lie algebra and $\mathfrak{h} \subset \mathfrak{g}$ a one-dimensional sub-algebra. Show that for any left-invariant vector field $X \in \mathfrak{h}$ there is a flow ϕ_t defined for all $t \in \mathbb{R}$ with $\phi_t \in H \subset G$ where H is the Lie subgroup of G with Lie algebra \mathfrak{h} . Show that the map $t \mapsto \phi_t$ is an onto homomorphism from the additive group \mathbb{R} to H.
- 3. Let G be a Lie group and \mathfrak{g} its Lie algebra. Let $X \in \mathfrak{g}$ be a left-invariant vector field and $\phi_t \in G$ the associated flow. Show that $ad_g X = X$ if and only if g commutes with ϕ_t . Conclude that ad_g is the identity on \mathfrak{g} if and only if g is in the center of G.
- 4. Define a map from \mathfrak{g} to G as follows. For $X \in \mathfrak{g}$ let ϕ_t^X be the associated flow. Define $\exp(X) = \phi_1^X$. Note that \mathfrak{g} is a vector space so $T_0\mathfrak{g} = \mathfrak{g}$ and $\exp_*(0) : \mathfrak{g} \to T_{id}G = \mathfrak{g}$. Show that $\exp_*(0) = id$.
- 5. Let G = GL(n) and recall that $\mathfrak{g} = M(n)$, the space of $n \times n$ matrices. Show that

$$\exp(X) = \sum_{k=0}^{\infty} \frac{1}{k!} X^k.$$