Notes for Math 3210, Final

Limits. Let $\{a_n\}$ be a sequence. Then

 $\lim a_n = a$

if for all $\epsilon > 0$ there exists an N such that if n > N then $|a_n - a| < \epsilon$. If no such a exists then the sequence is *divergent*. The sequence a_n is *Cauchy* if for all $\epsilon > 0$ there exists an N > 0 such that if n, m > N then $|a_n - a_m| \le \epsilon$.

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose $a_n \to a$, $b_n \to b$, c is a real number and k a natural number. Then

1. $ca_n \rightarrow ca;$ 2. $a_n + b_n \rightarrow a + b;$ 3. $a_n b_n \rightarrow ab;$ 4. $a_n/b_n \rightarrow a/b$ if $b \neq 0$ and $b_n \neq 0$ for all n;5. $a_n^k \rightarrow a^k;$ 6. $a_n^{1/k} \rightarrow a^{1/k}$ if $a_n \ge 0$ for all n.

If A is a subset of \mathbb{R} the $a = \sup A$ if $a \ge x$ for all $x \in A$ and $a' \ge x$ for all $x \in A$ then $x \le y$. We define $\inf A$ be reversing the inequalities. If we allow $+\infty$ and $-\infty$ the $\sup A$ and $\inf A$ always exist.

Let $\{a_n\}$ be a sequence and define $i_n = \inf\{a_k : k \ge n\}$ and $s_n = \sup\{a_k : k \ge n\}$. Then

$$\liminf a_n = \lim i_n$$

and

 $\limsup a_n = \lim s_n.$

If $x \neq 1$ then

$$\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.$$

Continuity. Let $f: D \longrightarrow \mathbb{R}$ be a function defined on a domain $D \subset \mathbb{R}$. Then

$$\lim_{x \to a} f = b$$

if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if for all $x \in D$ with $0 < |x - a| < \delta$ then $|f(x) - b| < \epsilon$. The function f is *continuous* at a if

$$\lim_{x \to a} f = f(a)$$

There is a theorem similar to Theorem 0.3 for limits of functions.

The function f is uniformly continuous if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $x, y \in D$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$. **Theorem 0.4** Let $f : [a,b] \longrightarrow \mathbb{R}$ be continuous. Then there exits a c and d in [a,b] such that $f(x) \leq f(c)$ and $f(x) \geq f(d)$ for all $x \in [a,b]$.

Theorem 0.5 (Intermediate Value Theorem) Let $f : [a,b] \longrightarrow \mathbb{R}$ be continuous. If y is between f(a) and f(b) then there exists a $x \in [a,b]$ such that f(c) = y.

Theorem 0.6 Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.

A sequence of functions $f_n : D \longrightarrow \mathbb{R}$ converges uniformly to $f : D \longrightarrow \mathbb{R}$ if for all $\epsilon > 0$ there exists an N > 0 such that if n > N then $|f_n(x) - f(x)| < \epsilon$ for all $x \in D$.

Theorem 0.7 Let $f_n : D \longrightarrow \mathbb{R}$ be continuous. If $f_n \to f$ uniformly then f is continuous.

Derivatives. Define the derivative f'(a) of the function f at a by

$$f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

if it exists.

Differentiation rules (abbreviated):

- 1. (f+g)'(a) = f'(a) + g'(a);
- 2. (fg)(a) = f'(a)g(a) + f(a)g'(a);

3.
$$(f/g)(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)};$$

4. $(f \circ g)'(a) = f'(g(a))g'(a)$

Theorem 0.8 (Mean Value Theorem) Let $f : [a,b] \longrightarrow \mathbb{R}$ be continuous on [a,b] and differentiable on (a,b). Then there exists a $c \in (a,b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Theorem 0.9 (L'Hôpital's Rule) If $f(x), g(x) \to 0$ or $f(x), g(x) \to \infty$ as $x \to a$ then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.$$

Integrals. Let $P = \{x_0 = a < x_1 < \dots < x_{n-1} < x_n = b\}$ be a partition of [a, b] and for $k = 1, \dots, n$ set

$$M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}$$
 and $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}.$

We then define the upper and lower sums for P by

$$U(f, P) = \sum_{k=1}^{n} M_k (x_k - x_{k-1})$$

and

$$L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).$$

We define the upper and lower integrals by

L

$$\int_{a}^{b} f(x)dx = \inf\{U(f, P) : P \text{ is a partition of } [0, 1]\}$$

and

$$\underline{\int}_{a}^{b} f(x)dx = \sup\{L(f, P) : P \text{ is a partial of } [0, 1]\}.$$

Then f is integrable if $\overline{\int}_{a}^{b} f(x) dx = \underline{\int}_{a}^{b} f(x) dx$ and we write

$$\int_{a}^{b} f(x)dx = \overline{\int}_{a}^{b} f(x)dx = \underline{\int}_{a}^{b} f(x)dx.$$

Theorem 0.10 f is integrable \iff for all $\epsilon > 0$ there exist a partition P such that U(f, P) - $L(f, P) < \epsilon \iff$ there exists partitions P_n such that $U(f, P_n) - L(f, P_n) \to 0$.

Properties of integrals (abbreviated):

- 1. $\int cf = c \int f$ if $c \in \mathbb{R}$;
- 2. $\int f + \int g = \int f + g;$
- 3. $\left| \int f \right| \leq \int |f|;$
- 4. $\int_{a}^{b} f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(u)du;$

5.
$$\int_{a}^{b} f(x)g'(x)dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x)dx$$

Theorem 0.11 (Fundamental Theorems of Calculus)

1.

$$\int_{a}^{b} f'(x)dx = f(b) - f(a)$$

2. Define

$$F(x) = \int_{a}^{x} f(t)dt.$$

If f is continuous at x then F'(x) = f(x).

Series. Let $\{a_n\}$ be a sequence. Then the series $\sum_{k=0}^{\infty} a_k$ converges if the sequence of partial sums $s_n = \sum_{k=0}^{n} a_k$ converges. If $\sum_{k=0}^{\infty} |a_k|$ converges then the series $\sum_{k=0}^{\infty} a_k$ converges absolutely. If $\sum_{k=0}^{\infty} |a_k|$ doesn't converge but $\sum_{k=0}^{\infty} a_k$ does then the series converges conditionally.

Tests for convergence and divergence:

- 1. If $\sum_{k=0}^{\infty} a_n$ converges then $a_n \to 0$.
- 2. If $a_n \ge |b_n|$ and $\sum_{k=0}^{\infty} a_k$ converges then $\sum_{k=0}^{\infty} b_k$ converges absolutely.
- 3. Let $\{a_n\}$ be a sequence with $0 \le a_{n+1} \le a_n$ and let $f: [0, \infty) \longrightarrow \mathbb{R}$ be a non-increasing function such that $f(n) = a_n$. Then $\sum_{k=1}^{\infty} a_k$ converges \iff

$$\int_1^\infty f(t)dt$$

converges. If $\sum_{k=1}^{\infty} a_k$ converges then

$$\int_{1}^{\infty} f(x)dx - a_1 \le \sum_{k=1}^{\infty} a_k \le \int_{1}^{\infty} f(x)dx.$$

- 4. Let $\rho = \limsup |a_n|^{1/n}$. Then $\sum_{k=0}^{\infty} a_k$ converges absolutely if $\rho < 1$ and diverges if $\rho > 1$.
- 5. Let $\rho = \lim_{k \to 0} |a_{n+1}|/|a_n|$ if it exists. Then $\sum_{k=0}^{\infty} a_k$ converges absolutely if $\rho < 1$ and diverges if $\rho > 1$.
- 6. Let $\{a_n\}$ be a sequence with $0 \le a_{n+1} \le a_n$. Then $\sum_{k=0}^{\infty} (-1)^k a_k$ converges $\iff a_n \to 0$.
- Let $\sum_{k=0}^{\infty} c_k (x-a)^k$ be a power series and let

$$R = \frac{1}{\limsup |c_k|^{1/k}}.$$

Then the power series converges on any interval (r - a, r + a) where r < R.

Taylor's formula: If

$$R_n(x) = f(x) - \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (x-a)^k$$

then

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

for some c between a and x.