Notes for Math 3210, Final

Limits. Let $\{a_n\}$ be a sequence. Then

 $\lim a_n = a$

if for all $\epsilon > 0$ there exists an N such that if $n > N$ then $|a_n - a| < \epsilon$. If no such a exists then the sequence is *divergent*. The sequence a_n is *Cauchy* if for all $\epsilon > 0$ there exists an $N > 0$ such that if $n, m > N$ then $|a_n - a_m| \leq \epsilon$.

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose $a_n \to a$, $b_n \to b$, c is a real number and k a natural number. Then

1. $ca_n \rightarrow ca;$ 2. $a_n + b_n \rightarrow a + b$; 3. $a_n b_n \rightarrow ab$; 4. $a_n/b_n \rightarrow a/b$ if $b \neq 0$ and $b_n \neq 0$ for all n; 5. $a_n^k \rightarrow a^k$; 6. $a_n^{1/k} \to a^{1/k}$ if $a_n \geq 0$ for all n.

If A is a subset of $\mathbb R$ the $a = \sup A$ if $a \ge x$ for all $x \in A$ and $a' \ge x$ for all $x \in A$ then $x \le y$. We define inf A be reversing the inequalities. If we allow $+\infty$ and $-\infty$ the sup A and inf A always exist.

Let $\{a_n\}$ be a sequence and define $i_n = \inf\{a_k : k \geq n\}$ and $s_n = \sup\{a_k : k \geq n\}$. Then

$$
\liminf a_n = \lim i_n
$$

and

 $\limsup a_n = \lim s_n$.

If $x \neq 1$ then

$$
\sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x}.
$$

Continuity. Let $f: D \longrightarrow \mathbb{R}$ be a function defined on a domain $D \subset \mathbb{R}$. Then

$$
\lim_{x \to a} f = b
$$

if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if for all $x \in D$ with $0 < |x - a| < \delta$ then $|f(x) - b| < \epsilon$. The function f is continuous at a if

$$
\lim_{x \to a} f = f(a)
$$

There is a theorem similar to Theorem 0.3 for limits of functions.

The function f is uniformly continuous if for all $\epsilon > 0$ there exists a $\delta > 0$ such that if $x, y \in D$ and $|x - y| < \delta$ then $|f(x) - f(y)| < \epsilon$.

Theorem 0.4 Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Then there exits a c and d in [a, b] such that $f(x) \le f(c)$ and $f(x) \ge f(d)$ for all $x \in [a, b]$.

Theorem 0.5 (Intermediate Value Theorem) Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. If y is between $f(a)$ and $f(b)$ then there exists a $x \in [a, b]$ such that $f(c) = y$.

Theorem 0.6 Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous. Then f is uniformly continuous.

A sequence of functions $f_n: D \longrightarrow \mathbb{R}$ converges uniformly to $f: D \longrightarrow \mathbb{R}$ if for all $\epsilon > 0$ there exists an $N > 0$ such that if $n > N$ then $|f_n(x) - f(x)| < \epsilon$ for all $x \in D$.

Theorem 0.7 Let $f_n : D \longrightarrow \mathbb{R}$ be continuous. If $f_n \to f$ uniformly then f is continuous.

Derivatives. Define the *derivative* $f'(a)$ of the function f at a by

$$
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}
$$

if it exists.

Differentiation rules (abbreviated):

- 1. $(f+g)'(a) = f'(a) + g'(a);$
- 2. $(fg)(a) = f'(a)g(a) + f(a)g'(a);$

3.
$$
(f/g)(a) = \frac{f'(a)g(a) - f(a)g'(a)}{g^2(a)}
$$
;

4.
$$
(f \circ g)'(a) = f'(g(a))g'(a)
$$

Theorem 0.8 (Mean Value Theorem) Let $f : [a, b] \longrightarrow \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b) . Then there exists $a c \in (a, b)$ such that

$$
f'(c) = \frac{f(b) - f(a)}{b - a}.
$$

Theorem 0.9 (L'Hôpital's Rule) If $f(x)$, $g(x) \to 0$ or $f(x)$, $g(x) \to \infty$ as $x \to a$ then

$$
\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}.
$$

Integrals. Let $P = \{x_0 = a < x_1 < \cdots < x_{n-1} < x_n = b\}$ be a partition of $[a, b]$ and for $k = 1, \ldots, n$ set

$$
M_k = \sup\{f(x) : x \in [x_{k-1}, x_k]\}\
$$
and $m_k = \inf\{f(x) : x \in [x_{k-1}, x_k]\}.$

We then define the upper and lower sums for P by

$$
U(f, P) = \sum_{k=1}^{n} M_k (x_k - x_{k-1})
$$

and

$$
L(f, P) = \sum_{k=1}^{n} m_k (x_k - x_{k-1}).
$$

We define the upper and lower integrals by

$$
\overline{\int}_{a}^{b} f(x)dx = \inf \{U(f, P) : P \text{ is a partition of } [0, 1]\}
$$

and

$$
\underline{\int}_{a}^{b} f(x)dx = \sup \{ L(f, P) : P \text{ is a partition of } [0, 1] \}.
$$

Then f is integrable if $\overline{\int}_a^b f(x)dx = \underline{\int}_a^b f(x)dx$ and we write

$$
\int_{a}^{b} f(x)dx = \overline{\int}_{a}^{b} f(x)dx = \underline{\int}_{a}^{b} f(x)dx.
$$

Theorem 0.10 f is integrable \iff for all $\epsilon > 0$ there exist a partition P such that $U(f, P)$ – $L(f, P) < \epsilon \iff$ there exists partitions P_n such that $U(f, P_n) - L(f, P_n) \to 0$.

Properties of integrals (abbreviated):

- 1. $\int cf = c \int f$ if $c \in \mathbb{R}$;
- 2. $\int f + \int g = \int f + g;$
- 3. $| \int f | \leq \int |f|$;
- 4. $\int_a^b f(g(t))g'(t)dt = \int_{g(a)}^{g(b)} f(u)du;$
- 5. $\int_a^b f(x)g'(x)dx = f(b)g(b) f(a)g(a) \int_a^b f'(x)g(x)dx$

Theorem 0.11 (Fundamental Theorems of Calculus)

1.

$$
\int_{a}^{b} f'(x)dx = f(b) - f(a)
$$

2. Define

$$
F(x) = \int_{a}^{x} f(t)dt.
$$

If f is continuous at x then $F'(x) = f(x)$.

Series. Let $\{a_n\}$ be a sequence. Then the series $\sum_{k=0}^{\infty} a_k$ converges if the sequence of partial sums $s_n = \sum_{k=0}^{n} a_k$ converges. If $\sum_{k=0}^{\infty} |a_k|$ converges then the series $\sum_{k=0}^{\infty} a_k$ converges abso-
lutely. If $\sum_{k=0}^{\infty} |a_k|$ doesn't converge but $\sum_{k=0}^{\infty} a_k$ does then the series converges *condit*

Tests for convergence and divergence:

- 1. If $\sum_{k=0}^{\infty} a_n$ converges then $a_n \to 0$.
- 2. If $a_n \ge |b_n|$ and $\sum_{k=0}^{\infty} a_k$ converges then $\sum_{k=0}^{\infty} b_k$ converges absolutely.
- 3. Let $\{a_n\}$ be a sequence with $0 \le a_{n+1} \le a_n$ and let $f : [0, \infty) \longrightarrow \mathbb{R}$ be a non-increasing function such that $f(n) = a_n$. Then $\sum_{k=1}^{\infty} a_k$ converges \iff

$$
\int_1^\infty f(t)dt
$$

converges. If $\sum_{k=1}^{\infty} a_k$ converges then

$$
\int_1^{\infty} f(x)dx - a_1 \le \sum_{k=1}^{\infty} a_k \le \int_1^{\infty} f(x)dx.
$$

- 4. Let $\rho = \limsup |a_n|^{1/n}$. Then $\sum_{k=0}^{\infty} a_k$ converges absolutely if $\rho < 1$ and diverges if $\rho > 1$.
- 5. Let $\rho = \lim_{n \to \infty} |a_{n+1}|/|a_n|$ if it exists. Then $\sum_{k=0}^{\infty} a_k$ converges absolutely if $\rho < 1$ and diverges if $\rho > 1$.
- 6. Let $\{a_n\}$ be a sequence with $0 \le a_{n+1} \le a_n$. Then $\sum_{k=0}^{\infty} (-1)^k a_k$ converges $\iff a_n \to 0$.
- Let $\sum_{k=0}^{\infty} c_k(x-a)^k$ be a power series and let

$$
R = \frac{1}{\limsup |c_k|^{1/k}}.
$$

Then the power series converges on any interval $(r - a, r + a)$ where $r < R$.

Taylor's formula: If

$$
R_n(x) = f(x) - \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k
$$

then

$$
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

for some c between a and x .