
Notes for Math 3210, Final

Limits. Let {an} be a sequence. Then

lim an = a

if for all ǫ > 0 there exists an N such that if n > N then |an − a| < ǫ. If no such a exists then
the sequence is divergent. The sequence an is Cauchy if for all ǫ > 0 there exists an N > 0 such
that if n,m > N then |an − am| ≤ ǫ.

Theorem 0.1 A sequence is convergent if and only if it is Cauchy.

Theorem 0.2 Every bounded sequence of real numbers has a convergent subsequence.

Theorem 0.3 Suppose an → a, bn → b, c is a real number and k a natural number. Then

1. can → ca;

2. an + bn → a+ b;

3. anbn → ab;

4. an/bn → a/b if b 6= 0 and bn 6= 0 for all n;

5. akn → ak;

6. a
1/k
n → a1/k if an ≥ 0 for all n.

If A is a subset of R the a = supA if a ≥ x for all x ∈ A and a′ ≥ x for all x ∈ A then x ≤ y.
We define inf A be reversing the inequalities. If we allow +∞ and −∞ the supA and inf A
always exist.

Let {an} be a sequence and define in = inf{ak : k ≥ n} and sn = sup{ak : k ≥ n}. Then

lim inf an = lim in

and
lim sup an = lim sn.

If x 6= 1 then
n∑

k=0

xk =
1− xn+1

1− x
.

Continuity. Let f : D −→ R be a function defined on a domain D ⊂ R. Then

lim
x→a

f = b

if for all ǫ > 0 there exists a δ > 0 such that if for all x ∈ D with 0 < |x − a| < δ then
|f(x)− b| < ǫ. The function f is continuous at a if

lim
x→a

f = f(a)

There is a theorem similar to Theorem 0.3 for limits of functions.
The function f is uniformly continuous if for all ǫ > 0 there exists a δ > 0 such that if x, y ∈ D

and |x− y| < δ then |f(x)− f(y)| < ǫ.
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Theorem 0.4 Let f : [a, b] −→ R be continuous. Then there exits a c and d in [a, b] such that

f(x) ≤ f(c) and f(x) ≥ f(d) for all x ∈ [a, b].

Theorem 0.5 (Intermediate Value Theorem) Let f : [a, b] −→ R be continuous. If y is

between f(a) and f(b) then there exists a x ∈ [a, b] such that f(c) = y.

Theorem 0.6 Let f : [a, b] −→ R be continuous. Then f is uniformly continuous.

A sequence of functions fn : D −→ R converges uniformly to f : D −→ R if for all ǫ > 0 there
exists an N > 0 such that if n > N then |fn(x) − f(x)| < ǫ for all x ∈ D.

Theorem 0.7 Let fn : D −→ R be continuous. If fn → f uniformly then f is continuous.

Derivatives. Define the derivative f ′(a) of the function f at a by

f ′(a) = lim
x→a

f(x)− f(a)

x− a

if it exists.
Differentiation rules (abbreviated):

1. (f + g)′(a) = f ′(a) + g′(a);

2. (fg)(a) = f ′(a)g(a) + f(a)g′(a);

3. (f/g)(a) = f ′(a)g(a)−f(a)g′(a)
g2(a) ;

4. (f ◦ g)′(a) = f ′(g(a))g′(a)

Theorem 0.8 (Mean Value Theorem) Let f : [a, b] −→ R be continuous on [a, b] and differ-

entiable on (a, b). Then there exists a c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 0.9 (L’Hôpital’s Rule) If f(x), g(x) → 0 or f(x), g(x) → ∞ as x → a then

lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.

Integrals. Let P = {x0 = a < x1 < · · · < xn−1 < xn = b} be a partition of [a, b] and for
k = 1, . . . , n set

Mk = sup{f(x) : x ∈ [xk−1, xk]} and mk = inf{f(x) : x ∈ [xk−1, xk]}.

We then define the upper and lower sums for P by

U(f, P ) =

n∑
k=1

Mk(xk − xk−1)
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and

L(f, P ) =
n∑

k=1

mk(xk − xk−1).

We define the upper and lower integrals by

∫ b

a

f(x)dx = inf{U(f, P ) : P is a partition of [0, 1]}

and ∫ b

a

f(x)dx = sup{L(f, P ) : P is a partion of [0, 1]}.

Then f is integrable if
∫ b

af(x)dx =
∫ b

a
f(x)dx and we write

∫ b

a

f(x)dx =

∫ b

a

f(x)dx =

∫ b

a

f(x)dx.

Theorem 0.10 f is integrable ⇐⇒ for all ǫ > 0 there exist a partition P such that U(f, P )−
L(f, P ) < ǫ ⇐⇒ there exists partitions Pn such that U(f, Pn)− L(f, Pn) → 0.

Properties of integrals (abbreviated):

1.
∫
cf = c

∫
f if c ∈ R;

2.
∫
f +

∫
g =

∫
f + g;

3. |
∫
f | ≤

∫
|f |;

4.
∫ b

a f(g(t))g′(t)dt =
∫ g(b)

g(a) f(u)du;

5.
∫ b

a f(x)g′(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a f ′(x)g(x)dx

Theorem 0.11 (Fundamental Theorems of Calculus)

1. ∫ b

a

f ′(x)dx = f(b)− f(a)

2. Define

F (x) =

∫ x

a

f(t)dt.

If f is continuous at x then F ′(x) = f(x).

Series. Let {an} be a sequence. Then the series
∑

∞

k=0 ak converges if the sequence of partial
sums sn =

∑n
k=0 ak converges. If

∑
∞

k=0 |ak| converges then the series
∑

∞

k=0 ak converges abso-
lutely. If

∑
∞

k=0 |ak| doesn’t converge but
∑

∞

k=0 ak does then the series converges conditionally.
Tests for convergence and divergence:
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1. If
∑

∞

k=0 an converges then an → 0.

2. If an ≥ |bn| and
∑

∞

k=0 ak converges then
∑

∞

k=0 bk converges absolutely.

3. Let {an} be a sequence with 0 ≤ an+1 ≤ an and let f : [0,∞) −→ R be a non-increasing
function such that f(n) = an. Then

∑
∞

k=1 ak converges ⇐⇒

∫
∞

1

f(t)dt

converges. If
∑

∞

k=1 ak converges then

∫
∞

1

f(x)dx − a1 ≤

∞∑
k=1

ak ≤

∫
∞

1

f(x)dx.

4. Let ρ = lim sup |an|
1/n. Then

∑
∞

k=0 ak converges absolutely if ρ < 1 and diverges if ρ > 1.

5. Let ρ = lim |an+1|/|an| if it exists. Then
∑

∞

k=0 ak converges absolutely if ρ < 1 and
diverges if ρ > 1.

6. Let {an} be a sequence with 0 ≤ an+1 ≤ an. Then
∑

∞

k=0(−1)kak converges ⇐⇒ an → 0.

Let
∑

∞

k=0 ck(x− a)k be a power series and let

R =
1

lim sup |ck|1/k
.

Then the power series converges on any interval (r − a, r + a) where r < R.

Taylor’s formula: If

Rn(x) = f(x)−
n∑

k=0

f (k)(a)

k!
(x− a)k

then

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.
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