Math 5510 Final - Part 1

Hand in these problems at the start of the exam. Handwritten solutions are OK.

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be define by $f(x_1, x_2) = a_1 x_1^2 + a_2 x_2^2$ where $a_1, a_2 \in \mathbb{R}$ and let $F: \mathbb{R}^3 \to \mathbb{R}$ be given by $F(x_1, x_2, x_3) = f(x_1, x_2) - x_3$.

- 1. Show that 0 is a regular value of F. (See the definition on the middle of p. 5 in the notes.)
- 2. Let $\Sigma = F^{-1}(\{0\})$ and show that the tangent space $T_{(0,0,0)}\Sigma$ is spanned by (1,0,0) and (0,1,0).
- 3. Show that the shape operator $L: T_{(0,0,0)}\Sigma \to T_{(0,0,0)}\Sigma$ is given by the matrix

$$L = \left(\begin{array}{cc} -2a_1 & 0\\ 0 & -2a_2 \end{array}\right)$$

in terms of the basis from (2). Use this to calculate the Gauss and mean curvatures at (0,0,0).

- 4. Let $\alpha \colon \mathbb{R}^2 \to \mathbb{R}^3$ be given by $\alpha(x_1, x_2) = (x_1, x_2, f(x_1, x_2))$. Show that α is a smooth parameterization of Σ . (See the definition at the top of p. 8 of the notes.)
- 5. Let E_1 and E_2 be the vector fields defined in Theorem 0.18 of the notes and g_{ij} the functions. Show that at (0,0,0), E_1 and E_2 are an orthonormal basis of $T_{(0,0,0)}\Sigma$. Show that $g_{ii}(x_1,x_2) = 1 + 4a_i^2 x_i^2$ and $g_{12}(x_1,x_2) = g_{21}(x_1,x_2) = 4a_1a_2x_1x_2$.
- 6. Use Theorem 0.18 to calculate $\langle D_{E_i}E_j, E_k \rangle$ and if either $x_1 = 0$ or $x_2 = 0$ show that $D_{E_1}E_1 = \frac{4a_1^2x_1}{1+4a_1^2x_1^2}E_1 + \frac{4a_1a_2x_2}{1+4a_2^2x_2^2}E_2$, $D_{E_2}E_2 = \frac{4a_1a_2x_1}{1+4a_1^2x_1^2}E_1 + \frac{4a_2^2x_2}{1+4a_2^2x_2^2}E_2$ and $D_{E_1}E_2 = D_{E_2}E_1 = 0$.

(Remark: If v_1 and v_2 are orthogonal and a basis then any vector w can be written as $w = \langle w, v_1 \rangle / ||v_1||^2 + \langle w, v_2 \rangle / ||v_2||^2$. In particular if either $x_1 = 0$ or $x_2 = 0$ then E_1 and E_2 are orthogonal and we can use this to write the vector fields $D_{E_i}E_j$ in terms of E_1 and E_2 .)