
Homework 2, Math 5510
September 22, 2015
Section 18: 3, 7(a)

Section 19: 2, 7, 8, 10
Section 20: 3, 4, 8

18.3(a) If U ∈ T and i is continuous then i−1(U) = U is in T ′. Hence T ⊂ T ′ and
T is finer than T ′. On the other hand if T ′ is finer then T then if U ∈ T then U ∈ T ′
so i−1(U) is open in T ′ if it is open in T and therefore i is continuous.

18.3(b) By (a) i is continuous if and only if T ′ is finer than T . Similarly i−1 is
continuous if and only if T is finer than T ′. It follows that i is a homeomorphism if and
only if T = T ′.

18.7(a) Let (a, b) be an interval in R. As these sets form a basis for R we just need
to show that the f−1(a, b) is open in R`. For x ∈ f−1(a, b) we claim there exists an
ε > 0 such that if y ∈ [x, x + ε) then f(y) ∈ (a, b). Assume not. Then for each n there
exists a xn ∈ [x, x+ 1/n) such that f(xn) 6∈ (a, b). But xn limits to x from the right so
f(xn) → f(x) and since f(x) ∈ (a, b) and (a, b) is open we must have f(xn) ∈ (a, b) for
large n, a contradiction. Therefore there exists an ε > 0 such that [x, x+ ε) ⊂ f−1(a, b).
As half open intervals are a basis for R` this shows that f−1(a, b) is open in R` and f is
continuous.

19.3 We need to show that the box topology on
∏
Aα is equivalent to the subspace

topology. Let U ⊂
∏
Aα be open in the box topology. Then for each x ∈ U there exists

a basis element B =
∏
Bα (in the box topology) with x ∈ B ⊂ U . The Bα are open

subsets in the subspace topology for each Aα so Bα = Vα ∩ Aα for an open set Vα in
Xα. Then B = (

∏
Vα) ∩ (

∏
Aα) so B is open in the subspace topology for

∏
Aα and

since for every x ∈ U there is open set B in the subspace topology such that x ∈ B and
B ⊂ U we have that U is open in the subspace topology.

Now assume that U is open in the subspace topology. Then U = V ∩ (
∏
Aα) for an

open subset V in
∏
Xα. Then for all x ∈ V there exists a basis element B =

∏
Bα for

the box topology with x ∈ B ⊂ V . Then B ∩
∏
Aα =

∏
(Bα ∩ Aα) is open in the box

topology for
∏
Aα so for x ∈ U have found an open set B in the box topology such that

x ∈ B ⊂ U and therefore U is open in the box topology.
The proof for the product topology is almost exactly the same if we simply replace

the word “box” with “product” in the above paragraphs with only one subtly in each
paragraph. For the first paragraph we note that for all but finitely many α we have that
Bα = Aα and in all these cases we can choose Vα = Xα so that

∏
Vα is a basis element

of the product topology. For the second paragraph we see that for all but finitely many
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of the Bα we have Bα = Xα so Bα ∩ Aα = Aα so the product
∏

(Bα ∩ Aα) is a basis
element, and open, in the product topology on

∏
Aα.

19.7 In the box topology R∞ is closed in Rω. To see this assume that x ∈ Rω\R∞.
Then x = (xi) will have infinitely many non-zero terms which we index xij . Let εij =
|xij |/2. For i not in the subsequence {ij} we let εi = 1 (although any positive number
will do) and set U =

∏
(xi − εi, xi + εi). Then U is an open neighborhood of x in the

box topology. If y ∈ U then yij 6= 0 and since {ij} is an infinite sequence this implies
that U ∩ R∞ = ∅. Therefore by Theorem 17.5 (a), x is not in the closure of R∞.

For the product topology the closure of R∞ is all of Rω. Let U be a neighborhood in
the product topology of a point x ∈ Rω. Then there is a basis element B =

∏
Ui. But

for all but finitely many i, Ui = R and therefore 0 ∈ Ui. Therefore B intersects R∞ and
by Theorem 17.5 (a), x ∈ R∞. Since x was arbitrary we have that R∞ = Rω.

19.8 Let fi : R → R be a function indexed by i ∈ N. Then if f : Rω → Rω is a
function with f(x) = (f1(x1), f2(x2), . . . ) and A =

∏
Ai is a product subset of Rω then

f−1(A) =
∏
f−1
i (Ai). In particular if each fi is continuous then so is f in both the box

and product topologies since if A is a basis element then so is f−1(A).
For the function h we let hi : R → R be defined by hi(x) = aix + bi. Then h is

of the form above and is continuous. Furthermore the functions h and hi are invertible
with h−1(x) = (h−1

1 (x1), h−1
2 (x2), . . . ) so h−1 is also continuous in both topologies and

therefore h is a homeomorphism in both topologies.

19.10 (a) Let {Tβ} be the collection of topologies on A such that all the fα are
continuous. This set of topologies is non-empty since it contains the discrete topology
on A. Let T = ∩Tβ. By Problem ... from the last homework that T is a topology. We
claim that this the coarsest topology where all the fα are continuous. To see that all
the fα are continuous we let U be an open set in Xα. Then f−1

α (U) is open in all the
Tβ so is contained in T and hence fα is continuous in the T topology. The topology T
must be the coarsest where all the fα are continuous as it is contained in every topology
where the fα are continuous.

19.10 (b) Clearly S ⊂ T as for all the fα to be continuous the sets in S must be
open. We saw in class that the topology generated by S is the coarsest topology that
contains S so by (a) this must be T .

19.10 (c) The composition of continuous function is continuous so if g : Y → A is
continuous then fα ◦g is continous for all α ∈ J . For the other direction let U ∈ T be an
open subset of A and let y ∈ g−1(U). Since S is a subbasis there exists sets U1, . . . , Un
with each Ui open in some Xαi and f(x) ∈ f−1

α1
(U1)∩ · · · ∩ f−1

αn
(Un) ⊂ U . Since all fα ◦ g
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are continuous we have that (fα1 ◦g)−1(U1)∩· · ·∩ (fαn ◦g)−1(Un) is open. As it contains
x and is contained in g−1(U) this implies that g−1(U) is open.

19.10 (d) Let U ∈ T be an open set in A and let x ∈ U . We will show that there
exists an open set V in

∏
Xα such that V ∩ Z ⊂ f(U) and f(x) ∈ V ∩ Z. By (b), S is

a subbasis for T so we can find α1, . . . , αn ∈ J and open sets Uαi in Xαi such that the
basis element B = f−1

α1
(Uα1)∩ · · · ∩ f−1

αn
(Uαn) contains x and is contained in U . Now let

Uα = Xα if α 6∈ {α1, . . . , αn}. Then V =
∏
Uα is open in

∏
Xα and Z ∩ V = f(B) is

open in Z and contains x. Hence f(U) is open.

20.3 (a) Let V ⊂ R be open and (x, y) ∈ d−1(V ). Then there exists an ε > 0 such
that (d(x, y)− ε, d(x, y) + ε) ⊂ V . Then U = (x− ε/2, x+ ε/2)× (y − ε/2, y + ε/2) is a
neighborhood of (x, y) and d(U) ⊂ V so by Theorem 18.1(d), d is continuous.

20.3 (b) We’ll show that an arbitrary basis element for the metric topology is open
in X ′ × X ′. Let (x, y) ∈ X ′ × X ′ and εx, εy > 0. Then B = Bd(x, εx) × Bd(y, εy) is a
basis element for the metric topology on X ×X. Let (x′, y′) ∈ B and t = d(x′, y′). Let
ε′ = min{d(x, x′), d(y, y′)}. Then d−1((t− ε′, t+ ε′)) is open in X ′ ×X ′ so B is open in
X ′ ×X ′.

20.4 (a) Since each coordinate function is continuous, all three functions are con-
tinuous in the product topology. The set U =

∏
(−1, 1) is open in the uniform topology

but f−1(U) = {0} is not open so f is not continuous in the uniform topology. To
show that g is continuous we observe that for any basis element Bρ̄(y, ε) in the uni-
form topology and any x ∈ g−1(Bρ̄(y, ε)) there is a ball Bd(x, δ) ⊂ g−1(Bρ̄(y, ε)) where
δ < ε − ρ̄(y, f(x)). Therefore g−1(Bρ̄(y, ε)) is open and g is continuous. In fact for any
function r(t) = (λ1t, λ2t, . . . ) with the |λi| ≤ 1 we have that Bd(x, δ) ⊂ r−1(Bρ̄(y, ε)) if
δ < ε− ρ̄(y, f(x)) so h is also continuous.

In the box topology know of the functions are continuous. To see this we observe
that the pre-image of

∏
(−1/n2, 1/n2) is an open set whose pre-image under all three

functions is {0} which is not open.
20.4 (b) We first make some general comments. In all three topologies a necessary

condition for a sequence to converge is that it must converge in each coordinate. If we
show this for the product topology than it is automatically true in the uniform and box
topologies as they are finer topologies. Let ai = (a1

i , a
2
i , . . . ) be a sequence in Rω that

converges to a ∈ Rω. If D̄(ai, a) < ε then for all j ∈ N, |aji − aj |/j < ε and this implies

that aji → aj as i → ∞, as desired. Therefore if any of the 4 sequences converge, they
converge to 0 = (0, 0, . . . ).

Next we notice that this is also a sufficient condition for convergence in the product
topology. Let ai be as above and assume that aji → aj as i → ∞. Let U =

∏
Uj be a

basis element for the product topology. We can assume that for j > J that Uj = R. For

each j ≤ J , for all but finitely many i, aji ∈ Uj and therefore for all but finitely many

3



i, aji 6∈ Uj for all 1 ≤ j ≤ J . This implies that for all but finitely many i, ai ∈ U and
ai → a. This implies that all 4 sequences converge in the product topology.

In the uniform topology we notice that ρ̄(wi, 0) = i so wi doesn’t converge. However,
for the other three topologies we have d(xi, 0) = d(yi, 0) = d(zi, 0) = 1/i so these three
sequences convergence.

For the box topology a sequence ai is convergent if and only if it converges in each
coordinate and there exists an N and a J such that if i > N then sequence aji is constant
once j > J . For the necessity of this condition we prove the contrapositive and assume
that sequences converges in each coordinate to aj but that the second condition doesn’t
hold. Therefore we can find an increasing subsequences of integers in and jn such that
ajmim 6= ajm . We then choose an open neighborhood U =

∏
Ui of a = (a1, a2, . . . ) with

Ujm = (ajm − εm, ajm + εm) where εm = |ajmim − a
jm |/2. Then none of the aim will be

contained in U so ai 6∈ a. This implies that the sequence wi, xi and yi do not converge
in the box topology.

The sufficiency of this condition is a little tedious so we will just show that zi con-
verges. Let

∏
Ui be a basis element of the box topology that contains (0, 0, . . . ). Then

U1 ∩ U2 is open and contains 0 so there exists an ε > 0 such that (−ε, ε) ⊂ U1 ∩ U2.
Therefore if 1/i < ε, we have zi ∈

∏
Ui so zi converges to (0, 0, . . . ).

20.8 (a) We first show that the box topology is finer than the `2-topology. Let
B`2(x, ε) be an `2-ball and y ∈ B`2(x, ε). Then there exists an ε′ > 0 such that B`2(y, ε′) ⊂
B`2(x, ε). Choose δi > 0 such that

∑
δ2
i < (ε′)2. Then∏

(yi + δi, yi − δi) ⊂ B`2(y, ε′) ⊂ B`2(x, ε)

so the box topology is finer than the `2-topology.
Now we show the `2-topology is finer than the uniform topology. Let y ∈ Bρ̄(x, ε)

and ε′ > 0 such that Bρ̄(y, ε
′) ⊂ Bρ̄(x, ε). But B`2(y, ε′) ⊂ Bρ̄(y, ε

′) ⊂ Bρ̄(x, ε) so the
uniform topology is finer than the `2-topology.

20.8 (b) Let ai be the sequence in R∞ where the ith coordinate is i and all other
coordinates are 0. By the convergence criteria from Problem 20.4(b) we see that ai
converges to (0, 0, . . . ) in the product topology. In the uniform topology ρ̄(0, ai) − i so
ai doesn’t converge and the uniform and product topologies are distinct.

Let bi be the sequence in R∞ where the first i coordinates are 1/
√
i. Then ρ̄(0, bi) =

1/
√
i but d`2(0, ai) = 1. So ai converges in the uniform topology but not in the `2-

topology so the two topologies are distinct.
Let ci be the sequence in R∞ where the ith coordinate is 1/i. Then by our divergence

criteria from Problem 20.4(b), ci diverges in the box topology. But d`2(0, ci) = 1/
√
i so

ci converges to (0, 0, . . . ) in the `2 topology. Hence these two topologies are also distinct.
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20.8 (c) The sequence ci is in the Hilbert cube H. As it converges in the `2 topology
but not in the box topology these two topologies are different on H.

Let y ∈ B`2(x, ε)∩H and as above choose ε′ > 0 such that B`2(y, ε′)∩H ⊂ B`2(x, ε)∩
H. Choose N > 0 such that

∑
n>N 1/n2 ≤ (ε′)2/4 and let δ = ε′/

√
2N . Let Ui =

(yi−δ, yi+δ) for i = 1, . . . , N and Ui = R for i > N . Then (
∏
Ui)∩H ⊂ B`2(y, ε′)∩H ⊂

B`2(x, ε) ∩H so the product topology on H is finer than `2-topology and hence the two
topologies are equal. Since the uniform topology is between the `2 and product topology
all three topologies are equal.
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