Homework 3, Math 5510
September 22, 2015
Section 18: 3, 7(a)

Section 19: 2, 7, 8, 10
Section 20: 3, 4, 8

#21.7 Assume that f,, — f uniformly and fix e > 0 then there exists an N > 0 such
that if n > N then |f,(x) — f(x)| < € for all x € X. But

p(fn: f) = jgg{min{lfn(z) —f(@)],1}} <e

S0 fn € Bs(f,€) so f, — f in RX.

Now assume that f, — f in RX. Then for for all 1 > ¢ > 0 there exists an N > 0
such that if n > N then f,, € B;(f,€). In particular min{|f,(z) — f(z)|,1} < € for all
z € X. Soif n > N we have |f,(x) — f(x)| < € and f,, — f uniformly.

#21.8 Since f, — f uniformly there exists an N; > 0 such that if n > N; then
d(fn(xn), f(zn)) < €/2. Since the f,, are continuous and the convergence is uniform by
Theorem 21.6, f is continuous and f(x,) — f(z) (since x,, — x). Therefore there exists
an Ny > 0 such that if n > No, d(f(zy), f(x)) < €/2. Applying the triangle inequality
we have

d(fn(zn) = f(@)) < d(falzn), f(zn)) + d(f(zn), f(@)) <€/2+€/2=¢
so fn(zn) = f(x).

#22.3 We first show the that for any continuous map p : X — Y if there is a
continuous map f : Y — X such that p o f is the identity map then p is quotient
map. Let U C Y be a subset with p~'(U) open. Then f~!(p~!(U)) is open since f is
continuous but f~1(p~H(U)) = (po f)~1(U) = U so this show that U most be open in
Y. By assumption p is continuous so this shows that p is a quotient map.

We’ll show that the quotient space is R. Projection maps on product spaces are
continuous so the restriction ¢ of m; to A is also continuous. Define f : R — A by
f(z) = (x,0). Then go f is the identity so by the above paragraph ¢ is a quotient map
so the quotient space is R.

To show that ¢ is not a open take the open set ((—1,1) x (0,00))NA = [0, 1) x (0, 00).
The g-image of this open set is [0, 00) and is not open so ¢ is not an open map.

The set {(x,y) € R?|y = 1/x} is a closed subset of A but its g-image is (0, 00) is not
closed so ¢ is also not a closed map.



#22.4(a) Let g : R?2 — R be defined by g(z,y) = x + y?. Then x¢ X yo ~ o1 X y1
if and only if g(xo,y0) = g(x1,y1) so if we can show that g is a quotient map then the
quotient space will be R. We follow the same approach as in Problem 22.3. Define
f:R—=R2by f(x) = (x,0). Both f and g are continuous and g o f is the identity so g
is a quotient map and the quotient space is R.

#22.4(b) We follow the same strategy and let g : R? — [0,00) be defined by
g(z,y) = 22 +y? and let f :[0,00) — R? be defined by f(x) = (x,0). Both f and g are
continuous and go f is the identity so g is a quotient space and [0, o) is the quotient space.

#239Let Z=XxY —Ax Bandlet C ={(x,y) € Z|]z ¢ A} and D = {(x,y) €
Zly ¢ B}. Note that Z = C'U D since if (z,y) € Z then we must have either x ¢ A
or y ¢ B (or possibly both). Let (xg,y0) € C. Then any (x1,y1) € D is any the same
connected component of Z since the sets {xo} X Y and X x {y;} are connected subsets
of Z that have the point (xg,y;) in common so there union is connected. Similarly every
point in C is in the same connected component as any point in D. This implies that
Z = CUD is connected.

#23.11 Assume that X is not connected and A, B C X are a separation. Note
that p~!(p(A4)) = A since if y € P(A) then p~!({y}) must be entirely contained in A
since otherwise p~1({y}) N A and p~({y}) N B would be a non-trivial separation of the
connected set p~1({y}). Similarly p~!(p(B)) = B. Since the sets A and B are open and
p is a quotient map this implies that p(A) and p(B) are open. They are also disjoint
since p~1(p(A)) = A and p~!(p(B)) = B are disjoint. Therefore p(A) and p(B) are a
non-trivial separation of Y, contradiction.

#23.12 Assume that Y U A has a non-trivial separation C, D. Note that C' and D
are open in the subspace topology for Y U A. Since Y is connected it must be contained
in C' or D. Lets say it is C. Since D is disjoint from C|, this implies that D is contained
in A. In particular, since A is open in X — Y is open in the subspace topology on Y U A
(and hence the subspace topology on A)

#24.3 Define ¢ : [0,1] — R by g(z) = f(x) — 2. Then g(0) = f(0) —0 > 0 and
g(1) = f(1) — 1 <0 so by the Intermediate Value Theorem there exists a « € [0, 1] such
that g(x) = 0. But then g(z) = f(z) —2z =0 and f(x) = x so z is the desired fix point.

For a counterexample let f(x) = x/2+4 1/2. Then f(z) = x if and only if x = 1 so f
doesn’t have a fixed point on either [0,1) or (0,1).



#24.8(a) Yes. Let (z,) and (yo) be points in [[ X,. Then for each « there are
paths v, : [0,1] = X, with 7,(0) = x4 and 74(1) = y4. Define a path v : [0,1] € [[ Xa
by 7(t) = (7a(t)). Since each coordinate function is continuous, 7 is continuous with
7(0) = () and ¥(1) = (ya). Therefore v is a path from (z,) to (ya).

#24.8(b) No. Take the topologists sine curve A = {(z,y) € R?|y = sin(1/x) and z >
0} C R? is path connected but its closure is not.

#24.8(c) Yes. Let yp and y; be points in f(X). Then there exists z; € X with
f(x;) = y;. The composition of a path from zy to x; with f is a path from yo to y;.

#24.8(d) Yes. Let © € NA,. Then for any xg,x1 € UA, there are paths vy from z
to x and vy from z to z1. The concatenation of these paths is a path from zg to x1 so
the union is path connected.

#24.10 Fix zg € U and let A be the set of points € U such that there is a path
in U from zy to x. We will show that A = U by showing that A is non-empty, open
and closed. Clearly zp € A so A is non-empty. For all x € A there is a ball By(x,¢€)
that is contained in U. Balls are path connected so every y € By(x,¢€) is in the same
path connected component as y and hence as zg. Therefore By(z,e) C A and A is open.
If + € A then every open neighborhood of x intersects A. As before we have a ball
By(z,€) C U. Since this ball intersects A there is a path in U from z to a point in A and
hence = € A and A = A is closed. Therefore A is non-empty, open and closed. Since U
is connected, A =U.



