
Homework 5, Math 5510
Problem #45.7 and some notes

#45.7(a) It is clear that D(A,B) ≥ 0 and D(A,B) = 0. We need to show that
D(A,B) = 0 if and only if A = B and the triangle inequality. Clear if A = B then
D(A,B) = 0. Now assume that A 6= B. Then there must be some point in one set that
is not in the other. We can assume there exists an a ∈ A\B. Since B is closed there is
an ǫ > 0 such that Bd(a, ǫ) is disjoint from B. Therefore if A ⊂ U(B, δ) then δ > ǫ so
D(A,B) ≥ ǫ > 0.

Now we prove the triangle inequality. Assume D(A,B) = d1 and D(B,C) = d2.
Then for all ǫ > 0 we have A ⊂ U(B, d1 + ǫ/2) and B ⊂ U(C, d2 + ǫ/2) and it follows
that A ⊂ U(U(B, d1+ǫ/2), d2+ǫ/2) ⊂ U(C, d1+d2+ǫ). Similarly C ⊂ U(A, d1+d2+ǫ).
Therefore D(A,C) ≤ d1 + d2.

#45.7(b) As the hint suggests, for any Cauchy sequence An in H we can pass to a
subsequence (which we don’t relabel) with D(An, An+1) < 1/2n. We let A be set defined
in the hint. We’ll show that An → Ā in H.

First we show that An ⊂ U(Ā, 1/2n−2). For each point z ∈ An we will show that
there exists and x ∈ A such that d(z, x) < 1/2n−2. To do so we claim that there
exists a sequence ak with ak ∈ Ak, d(ak, ak+1) < 1/2k and an = z. We construct the
sequence inductively. First let an = z and assume that {an, an+1, . . . , ak} has been
chosen. Since D(Ak, Ak+1) < 1/2k there exists a point in Ak+1 that is within 1/2k of
xk. Let xk+1 be such a point. We similarly define xk when k < n. A standard argument
using the sum of a geometric series shows that if k < j then d(xk, xj) < 1/2k−1 and
therefore xk is Cauchy. As X is complete, xk will have a limit x which by definition
is in A. Since d(xk, xj) < 1/2k−1 when k < j by taking the limit as j → ∞ we see
that d(xk, x) ≤ 1/2k−1 and therefore d(z = xn, x) ≤ 1/2n−1 < 1/2n−2. It follows that
An ⊂ U(A, 1/2n−2) ⊂ U(Ā, 1/2n−2).

Now we show that Ā ⊂ U(An, 1/2
n−2). Let x ∈ A. By definition there exists

a sequence xn with xn ∈ An, d(xn, xn+1) < 1/2n and xn → x. As in the previous
paragraph d(x, xn) ≤ 1/2n−1 so we have that for all x ∈ A there exists a point xn ∈ An

with d(x, xn) ≤ 1/2n−1. It follows that A ⊂ U(An, 1/2
n−1) and Ā ⊂ U(An, 1/2n−1).

Since U(An, 1/2n−1) ⊂ U(An, 1/2
n−2) we have Ā ⊂ U(An, 1/2

n−2).
It follows that d(Ā, An) < 1/2n−2 and An → Ā in H.

#45.7(c) Since X is totally bounded for all ǫ > 0 there exists a finite subset S ⊂ X
such that X = ∪

x∈S
Bd(x, ǫ). Let A be the collection of all subsets of S. We will show

that H = ∪
A∈A

BD(A, ǫ). Let C ∈ H and let A = {x ∈ S|Bd(x, ǫ) ∩ C 6= ∅}. Then A ∈ A

and C ⊂ U(A, ǫ) since for all z ∈ S there exists and x ∈ S such that z ∈ Bd(x, ǫ) (since
the ǫ-balls centered at points in S cover X) and therefore Bd(x, ǫ) ∩ S 6= ∅ so x ∈ A.
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We also have A ⊂ U(C, ǫ) since for all x ∈ A, Bd(x, ǫ) ∩ C 6= ∅ so there exists a point
z ∈ C with d(x, z) < ǫ. Since C ⊂ U(A, ǫ) and A ⊂ U(C, ǫ) we have D(A,C) < ǫ and
C ∈ BD(A, ǫ). Therefore H is totally bounded.

#45.7(d) A totally bounded, complete metric space is compact so by (b) and (c),
H is compact.

Iteration on the Hausdorff metric. There is a very interesting construction of
fractals using the Hausdorff metric on closed subsets of Rn.

LetH be the collection of closed, bounded subsets of Rn with the Hausdorff metric. In
homework you have shown thatH is a complete metric space. We will define a contraction
from H to itself. For i = 1, . . . , k let fi : R

n → R
n be a contraction. That is assume that

there exists a c < 1 such that ‖fi(x)−fi(y)‖ ≤ c‖x−y‖ where ‖‖ is the usually Euclidean
metric on R

n. We then define a map F : H → H by F (A) = f1(A) ∪ · · · ∪ fk(A). In
the Hausdorff metric we then have D(F (A), F (B)) ≤ cD(A,B). (Why?) It then follows
from the contraction mapping principle (also a homework problem) that there exists a
unique A ∈ H such that F (A) = A.

For particular choices of the fi we can get some interesting sets A that are fixed. For
example if we take n = 1 we can take f1(x) = x/3 and f2(x) = (x − 1)/3. These are
both contractions with c = 1/3. You should then check that the standard middle thirds
Cantor set if fixed by F .

For a more general version of the above example let f1(x) = x/k and f2(x) = (x−1)/k
where k ∈ (0, 1). If k ≥ 1/2 then the fixed set will be the interval [0, 1]. If k < 1/2 then
the fixed set will still be homeomorphic to the standard Cantor set. However the “size” of
the Cantor set will vary. To define this precisely we need to discuss Hausdorff measure.
You can also construct many well known fractals in the plane and higher dimensions
using this construction. There are lots of references for this. The definition of Hausdorff
dimension is a little bit complicated but you certainly have the tools to understand it.
If anyone is interested I am happy to discuss this outside of class.
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