Math 6220
Homework 2
February 7, 2007

Problem 1.2.4.2

. . . 1 1 1
The vertices of the cube on the unit sphere are the points (:I:%, iﬁ’ :I:%).

Using the formula (z,y,t) — z = xltlf, we see that the 8 vertices are mapped
to ;%if%.

Problem 2.1.2.1 We want to show that the composition of two
differentiable functions has a derivative. Assume first that f is
differentiable at a point zy and g is differentiable at the point
wo = f(20), and then define the following function:

g(w)—g(wo) s
hw) = wowe e LW
g'(wo), if w=wy

h(w) is continuous when w # w, since g is differentiable, and it is

a(w)=g(wo)

also continuous at w = wy since by definition ¢'(wy) = limy,_y, o=

Next, one may write the expression

g9(w) — g(wo) = h(w)(w — wo)

Making the subsitution wy — f(z9) and w — f(z) and dividing both
sides by z — z9(z # z9) yields
f(z) — f(20)

9(f(2)) — g(f(20)) = h(f(z))Lt—2

zZ — 20 zZ — 20

We may take the limit of both sides of the above, as z — z;, since
h is a continuous function and because g(z) is analytic. This yields
the expression

9(z) —g(=)

Z—r20 zZ — Z0 Z—r20 Z—r20 zZ — 20

where the limit distributes on the right hand side because both
limits exist and are well defined. Using the definition of the deriva-
tive, the above expression is equivalent to g(f(2)) = ¢'(f(2))f'(2),
and of course since ¢'(f(z)) and f'(z) are well defined, f/ composed
with g has a well defined derivative and thus is analytic.



Problem 2.1.2.3
Put u(z,y) = az® + bz’y + cxy? + dy*. By calculation,

uy = 3ax? 4+ 2bzy + cy? | Uge = 6ax + 2by
uy = 3dy? + 2czy + bz? | uy, = 6dy +2cz
By the requirment that v is harmonic, Au must be 0 or u,, +

uyy = 0 for all z,y € R. It follows that ¢ = —3a and b = —3d and u is
rewritten as

u(z,y) = az® — 3dz’y — 3axy®* +dy®*  a,d € R
Now we determine v, the conjugate harmonic function of

(i) By integration
Since vy, = u, = 3az? — 6dry — 3ay?, v has the form

v(x,y) = 3az’y — 3dzy? — ay® + C(z)
and since v, = —u,,
6azy — 3dy* + C'(z) = —3dy® + 6azy + 3dz*
therefore, C(z) = dz® + C. It follows
v(z,y) = dz® + 3az’y — 3dzy® — ay® + C

(ii) We find v by the fact that f(z) =u +iv = 2u(3, 5).

22 z z 2’2 23

o(Z,2) = (%—3—— 3a°— +d—)
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1 (a + 3di + 3a + di)

= (2% + 3iz?y + 3zi%y? +i%y®) (a + di)

= (2% = 3zy® +i(32%y — v*))(a + di)

= 32° — 3axy? — 3dz?y + dy® + i(dz® — 3dzy?® + 3az’y — ay®)

Hence, v(z,y) = dz3 + 3az?y — 3dzy® — ay® + C.
Problem 2.1.2.4
Assume that f is analytic and |f(z)| = ¢ for all z where c # 0 € R.

Note that you can assume that ¢ # 0, since |f(z)| = 0 implies that
z = 0. Notice that

C

2= 2 2)f(z) = ¢ z) = .
[f(2)" =" & f(2)f(2) < f(2) )




This shows that f is analytic as long as f is analytic and nonzero.
From this you can conclude that both f and f satisfy the Cauchy-
Riemann equations. Let f(z,y) = u(z,y) +iv(z,y). You have that

Uy = Uy Uy = —Uy

Uy = —Ug Uy = Ug.

The above implies that u, = u, = 0 and v; = vy, = 0. Integrating u,
with respect to = yields:

u(z,y) = /0 dz = ¢(y)

where ¢ is some real valued function of y. Now, differentiating
with respect to y gives you u, = ¢/(y). Since this must be zero,
you have that ¢(y) = a where a € R and hence, u(z,y) = a. Using
a similiar arguement, you can show that v(z,y) = b where b € R.
Therefore, f(z) = a + bi.

Problem 2.1.2.7 Show that a harmonic function satisfies the formal
differential equation

&%u B
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Let u be harmonic. Thus, %% + 5% = 0. Using the definitions

for % and % on page 27 of Ahlfors, we have
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and so
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since %—F%:Oand %:%_
Problem 2.1.4.2

Since there are n distinct roots, then each root, «;, is called a
simple zero and is characterized by the condition Q(a;) = 0 and
Q'(«;) #0. So we have

P(z) _ P(z) _ _A Ap
E) = Gma)le=an) — Geay) T+ Gr=am)
for A;,... A, unknown. Now notice,
Q(z) =lz—a)z—a)...(z—ai—1)(z — )z — ajt1) ... (2 — ap)]

=[z—a)(z—a1)(z—a2)...(z —ai—1)(z — @jt1) ... (z — )]
=(z—o)[(z—a1)(z—a)...(z —ai—1)(z — @jy1) ... (2 — ap)]
Hz—a)(z—a2)...(z — aji—1)(z — @jp1) ... (2 — )] (2 — )

= Q’(Oéi) = (Oéi — Oq)(Oéi — 052) . (Oéi — ai_l)(ai — Oéi_|_1) . (Oéi — an) (<>)
So we have

P(z) _ A As Ap
T (1) (z—az) """ (z—an)

= P(z) = A1Q(z) + A2Q(z)  A.Q(2)

— (z—a1) (z—a2) """ (z—an)

=A(z—a)(z—az)...(z —ay)
+As(z—a1)(z —a3)...(z —ayp)

.+An(z —ay)(z—az)... (2 —an_1)

To solve for A; we evaluate P(q;). Notice when we evaluate P
at «; we have




This is true for every 7 s.t. 1 <7 <n and so our claim is proven.

_ Pla) Plas) Plan)
P2) = gaita) T @) an T @t an
n P(a;
= i g etay

Problem 2.1.4.3
Proof: Using the conclusion of 2.1.4.2, let

— - Ck
P2)= ; Q' (o) (Z — Oék)Q(Z)

then P(ay) = Ck, and deg(P(Z)) < n. This proves the existence of
such polynomial.

If there is another polynomial G(Z), satisfying G(«;) = Cf, and
deg(G(Z)) < n, then P(Z) — G(Z) is a polynomial, whose degree is
less than n and has n roots oy, ay,...,a,. So P(Z)—G(Z) = 0. Hence
P(Z) = G(Z), which implies the uniqueness.



