
Haar Functions

Define functions ek
n : [0, 1] → C by

ek
n(x) =


2n/2 k−1

2n ≤ x < k−1/2
2n

−2n/2 k−1/2
2n ≤ x ≤ k

2n

0 otherwise

for integers n = 0, 1, . . . and 1 ≤ k ≤ 2n. Define e0
0(x) = 1.

These functions are called Haar functions and form an orthonormal basis of L2[0, 1].
We saw in class that an orthonormal set is a basis if and only the following holds:

If f ∈ L2[0, 1] and (f, ej
i ) = 0 for all ej

i then f = 0.

Below are some problems that work through the proof of this fact. You should try
to do all of them but I’ve tried to write it so each problem is essentially self-contained.

1. Show that the ek
n form an orthonormal set. That is show that (ek

n, ek
n) = 1 and

(ek
n, ej

i ) = 0 if n 6= i or k 6= j.

2. Show that

(χ[0,3/4], e
0
0) = 3/4

(χ[0,3/4], e
1
0) = 1/4

(χ[0,3/4], e
2
1) =

√
2/4.

Show for all other ek
n that (χ[0,3/4], e

k
n) = 0. Show that

χ[0,3/4] =
3
4
e0
0 +

1
4
e1
0 +

√
2

4
e2
1.

Make similar calculations for χ[0,1/2], χ[1/2,1] and χ[0,1/4]. You should get

χ[0,1/2] =
1
2
e0
0 +

1
2
e1
0,

χ[0,1/2] =
1
2
e0
0 −

1
2
e1
0,

and

χ[0,1/4] =
1
4
e0
0 +

1
4
e1
0 +

√
2

4
e1
1.
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3. If k ≤ 2n show that

ek
n+1(x) =

{ √
2ek

n(2x) x ≤ 1/2
0 x > 1/2

and if k > 2n show that

ek
n+1(x) =

{ √
2ek−2n

n (2x− 1) x ≥ 1/2
0 x < 1/2.

4. We want to prove that every characteristic function of the form χ[0,k/2n] is a finite
linear combination of the ej

i . This is a bit tricky and we will need to use induction.

We will induct on n. Let Pn be the statement that for all integers k with 1 ≤ k ≤ 2n

the characteristic function χ[0,k/2n] is finite linear combination of the ej
i .

To use induction we need to show that two things are true. First we need to see
that P0 is true. Then we need to show that if Pn is true then so is Pn+1.

(a) Show that P0 is true. This should be very easy! Also note that by problem 2
we know that P1 and P2 are also true.

(b) Show that χ[0,2c](2x) = χ[0,c](x).

(c) Now we begin the heart of the problem. Assume that Pn is true. We use this
to show that χ[0,k/2n+1] is a finite linear combination the ej

i . We first do the
case when k ≤ 2n.
Since Pn is true there are finitely many constants cj

i and functions ej
i such

that
χ[0,k/2n](x) =

∑
cj
ie

j
i (x).

From (b) we know that χ[0,k/2n+1](x) = χ[0,k/2n](2x). Use this and problem 3
to show that

χ[0,k/2n+1](x) =
{ ∑

cj
ie

j
i (2x) x ≤ 1/2

0 x > 1/2

and therefore

χ[0,k/2n+1](x) =
1√
2

∑
(i,j) 6=(0,0)

cj
ie

j
i+1(x) + c0

0χ[0,1/2](x)

=
1√
2

∑
(i,j) 6=(0,0)

cj
ie

j
i+1(x) +

c0
0

2
(e0

0(x) + e1
0(x)).

Note that problem 3 doesn’t apply to e0
0 and this part of the sum needs to be

dealt with separately.

2



(d) Now we need to take care of the case when k > 2n. We first observe that if
k > 2n then

χ[0,k/2n+1] = χ[0,1/2] + χ[1/2,k/2n+1]

as functions in L2[0, 1]. Note that in the usual sense these functions aren’t
equal since

χ[0,k/2n+1](1/2) = 1 6= 2 = χ[0,1/2](1/2) + χ[1/2,k/2n+1](1/2).

We already know that χ[0,1/2] is a finite linear combination of e0
0 and e1

0 so we
only need to show that χ[1/2,k/2n+1] is a finite linear combination of the ej

i .
Observe that

χ[1/2,k/2n+1](x) = χ[0, k−2n

2n ](2x− 1).

Applying the assumption that Pn is true we have

χ[0, k−2n

2n ](x) =
∑

cj
ie

j
i (x)

where the right-hand side is a finite sum.
We now use the second half of problem 3 to see that

χ[1/2,k/2n+1](x) =
{ ∑

cj
ie

j
i (2x− 1) x ≥ 1/2
0 x < 1/2

and therefore

χ[1/2,k/2n+1](x) =
1√
2

∑
(i,j) 6=(0,0)

cj
ie

j+2n

i+1 (x) + c0
0χ[1/2,1](x)

=
1√
2

∑
(i,j) 6=(0,0)

cj
ie

j+2n

i+1 (x) +
c0
0

2
(e0

0(x)− e1
0(x)).

5. Let f ∈ L2[0, 1] such that (f, ej
i ) = 0 for all ej

i . Show that∫ k/2n

0
f(x)dx = 0

for all non-negative integers n with 1 ≤ k ≤ 2n.

6. A diadic rational is a number of the form k/2n where n is a positive integer and k
is an integer. Show that the diadic rationals are dense in R. Here is one way to do
this:
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(a) Let x and y be real numbers with x > y. Show that there exists a positive
integer n such that 2nx− 2ny > 1.

(b) Let x and y be real numbers with x−y > 1. Show that there exists an integer
k such that x > k > y. (Hint: Let k be the smallest integer such that k > y.
Why does such a k exist?)

(c) Use (a) and (b) to show that if x and y are real numbers with x > y then
there exists a diadic rational k/2n with x > k/2n > y.

(d) Let x be a real number. By (c) for a positive integer i we can find a diadic
rational ki/2ni such that x − 1/i < ki/2ni < x. Show that ki/2ni → x and
conclude that the diadic rationals are dense in R.

7. Let A be a dense subset of R. Show that for every x in R there is an increasing
sequence ai ∈ A such that ai → x. (Hint: Fix some a0 ∈ A with a0 < x. Now
inductively define the sequence by choosing ai such that max{ai−1, x−1/i} < ai <
x.)

8. Let x be a positive real number and xi an increasing sequence of positive real
numbers such that xi → x. Let f : [0, x] → R be a non-negative measurable
function. Show that ∫ xi

0
f(y)dy →

∫ x

0
f(y)dy.

(Hint: Apply the Lesbegue Monotone Convergence Theorem to the functions
fχ[0,xi] on the interval [0, x].)

Now let f : [0, x] → R be any measurable function such that∫ x

0
|f(y)|dy < ∞

and show that ∫ xi

0
f(y)dy →

∫ x

0
f(y)dy.

9. Let f ∈ L2[0, 1] such that (f, ej
i ) = 0 for all ej

i . Use (5-8) to show that∫ x

0
f(y)dy = 0

for all x ∈ [0, 1] and therefore ∫ x1

x0

f(y)dy = 0
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for all x0, x1 ∈ [0, 1] or more generally if A is a finite union of intervals in [0, 1]
then ∫

A
f(y)dy = 0.

10. We need to recall a few things from measure theory. The symmetric difference of
two sets is

S(A,B) = (A−B) ∪ (B −A).

We then define a distance between two sets by

d(A,B) = d(S(A,B)).

An elementary subset of R is a finite union of bounded intervals. Recall that for
any measurable subset E of R with m(E) < ∞ then there exist elementary sets Ai

such that d(Ai, E) → 0.

(a) Find a subsequence Aik such that d(Aik , E) < 1/2k and then note that∑
k

d(Aik , E) =
∑

k

m(S(Aik , E)) < ∞.

(b) Show that χAik
→ χE pointwise almost everywhere and therefore fχAik

→
fχE pointwise a.e. for any function f . (Hint: Apply the Borel-Cantelli
Lemma to the sets S(Aik , E).)

11. We now want to show that for any measurable subset E of [0, 1] that
∫
E f(x)dx = 0.

(a) Note that ∫ 1

0
|f(x)|dx ≤

∣∣∣∣∫ 1

0
f(x)dx

∣∣∣∣ ≤ |(f, e0
0)| ≤ ‖f‖2 < ∞.

We want to apply Lebesgue’s Dominated Convergence with |f | the bounding
function.

(b) Let Ai be elementary sets with d(Ai, E) < 1/2i. Apply (10) and the domi-
nated convergence theorem to the functions fχAi and fχE to see that∫

Ai

f(x)dx →
∫

E
f(x)dx

and conclude that
∫
E f(x)dx = 0.
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12. We are now ready to finish. Again let f ∈ L2[0, 1] such that (f, ej
i ) = 0 for all ej

i .
Conclude that for every measurable set E ⊂ [0, 1] we have

∫
E f(x)dx = 0. (This

should just be putting together the previous problems.)

Now define functions f+(x) = max{f(x), 0} and f−(x) = −min{−f, 0} and sets
E+ = {x ∈ [0, 1]|f(x) ≥ 0} and E− = {x ∈ [0.1]|f(x) < 0}. Note that

(a) f = f+ − f−;

(b)
∫ 1
0 f+(x)dx =

∫
E+ f+(x)dx =

∫
E+ f(x)dx = 0;

(c)
∫ 1
0 f−(x)dx =

∫
E− f−(x)dx =

∫
E− f(x)dx = 0;

We have seen in class that if the integral of a non-negative function is 0 then the
function is 0 a.e. Conclude that f+ and f− are 0 a.e. and therefore f is 0 a.e.
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