
Homework 2, Math 5520
Spring 2018

Let {Ci} be a collection of abelian groups indexed by the non-negative integers and
∂i : Ci → Ci−1 homomorphisms with ∂i ◦ ∂i+1 = 0. For convenience we assume that
∂0 = 0. Then C = {(Ci, ∂i)} is a chain complex. For each i we define subgroups of Ci by

Zi(C) = ker ∂i and Bi(C) = im∂i+1.

The Zi is the subgroup of cycles and Bi is the subgroup of boundaries. An element of
Ci is a chain. The condition that ∂i ◦ ∂i+1 = 0 implies that Bi(C) ⊂ Zi(C). We then
define the homology groups by

Hi(C) = Zi(C)/Bi(C).

Two cycles z0, z1 ∈ Zi(C) are homologous if they differ by a boundary; that is there
exists a b ∈ Bi(C) such that b = z0 − z1 or, equivalently, there exists a chain c ∈ Ci+1

such that ∂i+1c = z0 − z1. If z ∈ Zi(C) is a cycle then [z] will represent the homology
class in Hi(C).

Lets begin with some examples. In what follows assume that Ci = 0 for i > 2 and
i = 0 and C1 = C2 = Z. Then we must have ∂i = 0 if i 6= 2.

1. Calculate H2(C), H1(C) and H0(C) if

(a) ∂2 is an isomorphism;

(b) ∂2 is the zero map;

(c) ∂2 is multiplication by n.

A chain map φ : A→ C be chain complexes A and C is a collection of homomorphisms
φi : Ai → Ci such that φi−1 ◦ ∂i = ∂i ◦ φi.

2. Show that φi(Zi(A)) ⊂ Zi(C).

3. Show that if z0, z1 ∈ Zi(A) are homologous then φi(z0) and φi(z1) are homologous.

4. Show that there is a well defined homomorphism (φi)∗ : Hi(A) → Hi(C) given by
(φi)∗([z]) = [φi(z)].

Now let Ai be family of abelian groups and φi : Ai → Ai−1 homomorphisms. This
sequence is exact if imφi = kerφi+1. A sequence that is indexed by non-negatives integers
is typically called a long exact sequence. A sequence of length five where the starting and
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ending groups are trivial is a short exact sequence. If A, B and C are chain complexes
and φ : A→ B and ψ : B → C are chain maps then

0 −→ A
φ−→ B

ψ−→ C −→ 0

is a short exact sequence of chain complexes if for each i we have that

0 −→ Ai
φi−→ Bi

ψi−→ Ci −→ 0

is a short exact sequence.
A fundamental result is that a short exact sequence of chain complexes determines

a long exact sequence of homology groups. This is called the “snake lemma” and the
proof follows from “diagram chasing”.

5. Show that im(φi)∗ ⊂ ker(ψi)∗.

6. Show that if β ∈ Bi is a cycle and ψi(β) = 0 then there exists a cycle α ∈ Ai with
φi(α) = β. Conclude that im(φi)∗ = ker(ψi)∗.

7. Given a cycle γ ∈ Ci show that there exists a chain β ∈ Bi with ψi(β) = γ and a
α ∈ Ai−1 such that φi−1(α) = ∂iβ.

For the below problems assume that α ∈ Ai−1, β ∈ Bi and γ ∈ Ci with φi−1(α) = ∂iβ
and ψi(β) = γ.

8. Show that if γ = 0 then α is a boundary. Conclude that if β0, β1 ∈ Bi with
ψi(βj) = γ and α0, αi ∈ Ai−1 with φi−1(αj) = ∂iβj then α0 and α1 are homologous.

9. If γ is a boundary show that β can be chosen to be a boundary. Use this and
(8) to show that if γ0, γ1 ∈ Ci are homologous, β0, β1 ∈ Bi with ψi(βj) = γj and
α0, α1 ∈ Ai−1 with φi(αj) = ∂iβj then α0 and α1 are homologous.

10. Conclude that there is a well defined homomorphism δi : Hi(C) → Hi−1(A) given
by δi([γ]) = [α].

11. If β is a cycle show that α = 0 and conclude that im(ψi)∗ ⊂ ker δi.

12. If α is a boundary show that β can be chosen to be a cycle. Conclude that
ker δi ⊂ im(ψi)∗ and therefore ker δi = im(ψi)∗.

13. By the definition of α we have that ψi−1(α) = ∂iβ is a boundary. Conclude that
imδi ⊂ ker(ψi−1)∗.
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14. Given a cycle α′ ∈ Ai−1 such that φi−1(α
′) is a boundary show that there exists a

β′ ∈ Bi and a cycle γ′ ∈ Ci with ψi(β
′) = γ′ and φi−1(α

′) = ∂iβ
′. Conclude that

ker(ψi−1)∗ ⊂ imδi and therefore ker(ψi−1)∗ = imδi.

Congratulations! You have proved the snake lemma!
There are some important examples. Let C be a a chain complex. If Bi ⊂ Ci are

subgroups with ∂i(Bi) ⊂ Bi−1 then B = {(Bi, ∂i)} is a sub-chain complex. The quotient
groups Ci/Bi also from a chain complex:

15. Let c0, c1 ∈ Ci be chains such that c1 − c0 ∈ Bi. Show that ∂ic0 − ∂ic1 ∈ Bi−1.
Conclude that ∂i descends to a map Ci/Bi → Ci−1/Bi−1.

16. Show that
0 −→ B −→ C −→ C/B −→ 0

is a short exact sequence of chain complexes.

Another natural example comes from a chain complex C and two subcomplexes
A,B ⊂ C such that for each i, Ai and Bi generate Ci. That is ever element c can be
written as a sum c = a+ b where a ∈ Ai and b ∈ Bi.

17. Let Di = Ai ∩Bi and show that D = {(Di, ∂i)} is a subcomplex of C.

18. Show that A
⊕
B = {(Ai

⊕
Bi, ∂i ⊕ ∂i)} is a chain complex.

19. Let ιA and ιB be the inclusion maps of D in A and B, respectively. Show that
these are chain maps and the map D → A

⊕
B given by d 7→ (ιA(d),−ιB(d)) is a

chain map.

20. Let jA and jB be the inclusion maps of A and B into C. Show that the map
(a, b) 7→ jA(a) + jB(b) is a chain map from A

⊕
B → C.

21. Show that

0 −→ D
(ιA,−ιB)−→ A

⊕
B

jA+jB−→ C −→ 0

is a short exact sequence of chain complexes.

Simplicial complexes
Let S be a set. Then Z(S) is the group of formal sums of S with Z-coefficients. That

is an element of n ∈ Z(S) is an assignment to each s ∈ S and integer ns such that at
but finitely many of the coefficients in n are zero. The group operation is then adding
coefficients.

If S is a finite set (as it will be for our examples) then the last condition automatically
holds. However, there are many natural situations (often arising in topology) where S can
be an infinite set. One can also replace the group Z with an arbitrary group. Common
examples are R or more generally an arbitrary field but we will stick to Z.
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1. Show that Z(S) is a group.

2. Let R be another set. Show that any map of R to Z(S) extends to a unique
homomorphism from Z(R) to Z(S).

Now let S be a finite ordered set with n+ 1 elements. Let S(k) be the set of subsets

of S with k + 1 elements. Note that S(k) will have

(
n+ 1
k + 1

)
elements.

Let {v0, . . . , vk} be an element in S(k), where the indices indicate the order, and
define ∂k : S(k) → Z

(
S(k−1)

)
by

∂k{v0, . . . , vk} =

k∑
i=0

(−1)i{v0, . . . , v̂i, . . . , vk}.

Here, the v̂i indicates that vi has been removed from the set.
By (2) this extends to a homomorphism ∂k : Z

(
S(k)

)
→ Z

(
S(k−1)

)
.

3. Show that ∂k−1 ◦ ∂k = 0 so that {Z(S(k)), ∂k} is a chain complex.

Now let X be a collection of subsets of S with the property that if A ∈ X and
B is a subset of A then B ∈ X. Then X is an abstract simplicial complex. We let
X(k) = X ∩ S(k) be those subsets in X that have k + 1 elements.

4. If X is an abstract simplicial complex show that ∂k
(
Z
(
X(k))

))
⊂ Z

(
X(k−1)) and

therefore {Z
(
X(k)

)
, ∂k} is sub-chain complex of {Z

(
S(k)

)
, ∂k}.

A topological simplicial complex is a topological space X that is a union of simplices
such that the intersection of any two simplices is a single simplex.

5. Let X be a topological simplicial complex. Let X(0) be the set of vertices of X and
give this set an order. Let X(k) be the subsets of X(0) with k + 1 elements that
span a k-simplex in X. Show that ∪X(k) is an abstract simplicial complex.

6. Show that any abstract simplicial complex can be realized as a topological simplicial
complex.
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