Homework 2, Math 5520
Spring 2018

Let {C;} be a collection of abelian groups indexed by the non-negative integers and
0;: C; — C;—1 homomorphisms with 9; o 9,11 = 0. For convenience we assume that
0o = 0. Then C = {(C;, 0;)} is a chain complex. For each i we define subgroups of C; by

Zz(C) = ker 82 and BZ(C) = im8i+1.

The Z; is the subgroup of cycles and B; is the subgroup of boundaries. An element of
C; is a chain. The condition that 0; o ;41 = 0 implies that B;(C) C Z;(C). We then
define the homology groups by

Hi(C) = Zi(C)/B(C).

Two cycles zg,z1 € Z;(C) are homologous if they differ by a boundary; that is there
exists a b € B;(C) such that b = zg — 21 or, equivalently, there exists a chain ¢ € Cj41
such that 0;41¢ = 29 — z1. If z € Z;(C) is a cycle then [z] will represent the homology
class in H;(C).

Lets begin with some examples. In what follows assume that C; = 0 for ¢ > 2 and
i =0and C; = Cy = Z. Then we must have 9; = 0 if i # 2.

1. Calculate Hy(C), H1(C) and Hy(C) if
(a) 09 is an isomorphism;
(b) O is the zero map;

(¢c) 02 is multiplication by n.

A chain map ¢: A — C be chain complexes A and C'is a collection of homomorphisms
qbi: Al — CZ such that (Z)i_l o 82 = 81 ¢} ¢z

2. Show that (bZ(ZZ(A)) C Zi(C)
3. Show that if zg, 21 € Z;(A) are homologous then ¢;(zp) and ¢;(z1) are homologous.

4. Show that there is a well defined homomorphism (¢;).: H;(A) — H;(C) given by
(¢:)x([2]) = [di(2)].

Now let A; be family of abelian groups and ¢;: A; — A;_1 homomorphisms. This
sequence is ezact if im¢; = ker ¢;11. A sequence that is indexed by non-negatives integers
is typically called a long exact sequence. A sequence of length five where the starting and



ending groups are trivial is a short exact sequence. If A, B and C' are chain complexes
and ¢: A — B and i: B — C are chain maps then

0-—A-B Y c—50

is a short exact sequence of chain complexes if for each i we have that
&i i
0— A — B, —C; —0

is a short exact sequence.

A fundamental result is that a short exact sequence of chain complexes determines
a long exact sequence of homology groups. This is called the “snake lemma” and the
proof follows from “diagram chasing”.

5. Show that im(¢;)« C ker(¢;)s.

6. Show that if § € B; is a cycle and 1;(3) = 0 then there exists a cycle a € A; with
¢i(a) = B. Conclude that im(¢;). = ker(1;)..

7. Given a cycle v € C; show that there exists a chain 8 € B; with ¢;(8) = v and a
« € A;_1 such that (bi_l(a) = (‘)ZB

For the below problems assume that o € 4;_1, f € B; and v € C; with ¢;_1(a) = 9;8
and ¢;(8) = v

8. Show that if v = 0 then « is a boundary. Conclude that if fy, 51 € B; with
¥i(Bj) = v and o, oy € A;—1 with ¢;_1 (o) = 0;5; then o and o are homologous.

9. If v is a boundary show that S can be chosen to be a boundary. Use this and
(8) to show that if vy,y1 € C; are homologous, By, 81 € B; with ¢;(53;) = ~; and
ap, a1 € Aj—1 with ¢;(a;) = 0;8; then ag and a1 are homologous.

10. Conclude that there is a well defined homomorphism ¢;: H;(C') — H;_1(A) given
by 6i([7]) = [a.

11. If B is a cycle show that e = 0 and conclude that im(v;). C ker d;.

12. If a is a boundary show that 8 can be chosen to be a cycle. Conclude that
ker d; C im(1);). and therefore ker §; = im(1);)..

13. By the definition of o we have that ¢;_1(a) = 9;8 is a boundary. Conclude that
imé; C ker(wi_l)*.



14. Given a cycle o/ € A;_1 such that ¢;—1(’) is a boundary show that there exists a
B' € B; and a cycle v/ € C; with ;(8') =+ and ¢;_1(a’) = ;8. Conclude that
ker(;—1). C imd; and therefore ker(i;_1), = imd;.

Congratulations! You have proved the snake lemma!

There are some important examples. Let C be a a chain complex. If B; C C; are
subgroups with 0;(B;) C B;_1 then B = {(B;,0;)} is a sub-chain complex. The quotient
groups C;/B; also from a chain complex:

15. Let ¢y, cq1 € C; be chains such that ¢; — ¢y € B;. Show that 0;c9 — 9ic1 € B;_1.
Conclude that 0; descends to a map C;/B; — C;_1/B;_1.

16. Show that
0—B—C—C/B—0

is a short exact sequence of chain complexes.

Another natural example comes from a chain complex C' and two subcomplexes
A, B C C such that for each i, A; and B; generate C;. That is ever element ¢ can be
written as a sum ¢ = a + b where a € A; and b € B;.

17. Let D; = A; N B; and show that D = {(D;,0;)} is a subcomplex of C.
18. Show that AP B = {(A; @ Bi,0; & 0;)} is a chain complex.

19. Let t4 and tp be the inclusion maps of D in A and B, respectively. Show that
these are chain maps and the map D — A B given by d — (14(d), —tp(d)) is a
chain map.

20. Let ja and jp be the inclusion maps of A and B into C'. Show that the map
(a,b) — ja(a) + jp(b) is a chain map from AP B — C.

21. Show that o
0— D" AP B ¢ 0
is a short exact sequence of chain complexes.

Simplicial complexes

Let S be a set. Then Z(S) is the group of formal sums of S with Z-coefficients. That
is an element of n € Z(S) is an assignment to each s € S and integer n, such that at
but finitely many of the coefficients in n are zero. The group operation is then adding
coefficients.

If S is a finite set (as it will be for our examples) then the last condition automatically
holds. However, there are many natural situations (often arising in topology) where S can
be an infinite set. One can also replace the group Z with an arbitrary group. Common
examples are R or more generally an arbitrary field but we will stick to Z.



1. Show that Z(S) is a group.

2. Let R be another set. Show that any map of R to Z(S) extends to a unique
homomorphism from Z(R) to Z(S).

Now let S be a finite ordered set with n + 1 elements. Let S¥) be the set of subsets

of 8 with k + 1 elements. Note that S*) will have < Zii ) elements.
Let {vg,...,vx} be an element in S®) . where the indices indicate the order, and
define 9y : S® — Z (S*-Y) by

k
Or{vo, . vk} = (=1){vo, ..., Bi,. .., v}
=0

Here, the 0; indicates that v; has been removed from the set.
By (2) this extends to a homomorphism 0 : Z (S(k)) —Z (S(k_l)).

3. Show that d,_1 0 9, = 0 so that {Z(S(k)), Ok} is a chain complex.

Now let X be a collection of subsets of S with the property that if A € X and
B is a subset of A then B € X. Then X is an abstract simplicial complex. We let
X®) = X N S®*) be those subsets in X that have k + 1 elements.

4. If X is an abstract simplicial complex show that O (Z (X(k)))) CZ (X(k_l)) and
therefore {Z (X(k)) , O} is sub-chain complex of {Z (S(k)) , Ok}

A topological simplicial complex is a topological space X that is a union of simplices
such that the intersection of any two simplices is a single simplex.

5. Let X be a topological simplicial complex. Let X ©) be the set of vertices of X and
give this set an order. Let X*) be the subsets of X(© with k + 1 elements that
span a k-simplex in X. Show that UX*) is an abstract simplicial complex.

6. Show that any abstract simplicial complex can be realized as a topological simplicial
complex.



