Chapter 11

The Seifert-van Kampen
Theorem

§67 Direct Sums of Abelian Groups

In this section, we shall consider only groups that are abelian. As is usual, we shall
write such groups additively. Then O denotes the identity element of the group, —x
denotes the inverse of x, and nx denotes the n-fold sum x + --- + x.

Suppose G is an abelian group, and {Gq }qyes is an indexed family of subgroups
of G. We say that the groups G, generate G if every element x of G can be written as
a finite sum of elements of the groups G, . Since G is abelian, we can always rearrange
such a sum to group together terms that belong to a single G, ; hence we can always
write x in the form

X =Xg; + -+ Xq,,

where the indices «; are distinct. In this case, we often write x as the formal sum
X = ) ,eJ Xa» Where it is understood that x, = 0 if « is not one of the indices aj,
v, Oy,

If the groups G, generate G, we often say that G is the sum of the groups G,
writing G = ) _,.; Ga in general, or G = G + - -- + G, in the case of the finite
index set {1, ...,n}.

Now suppose that the groups G, generate G, and that for each x € G, the expres-
" sion x = }_ x, for x is unique. That is, suppose that for each x € G, there is only one
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408 The Seifert-van Kampen Theorem Ch. 11

J-tuple (xg)aecs With xo = O for all but finitely many « such that x = >_ xo. Then G
is said to be the direct sum of the groups G, and we write

G =P Ge.

aecl
or in the finite case, G = G, ® --- ® G,,.

EXAMPLE 1. The cartesian product R“ is an abelian group under the operation of
coordinate-wise addition. The set G, consisting of those tuples (x;) such that x; = O for
i # n is a subgroup isomorphic to R. The groups G, generate the subgroup R* of R“;
indeed, R is their direct sum.

A useful characterization of direct sums is given in the following lemma; we call
it the extension condition for direct sums:

Lemma 67.1. Let G be an abelian group; let {G,} be a family of subgroups of G. If
G is the direct sum of the groups G4, then G satisfies the following condition:

Given any abelian group H and any family of homomorphisms
(*) hy : Go — H, there exists a homomorphism h : G — H whose
restriction to G, equals hq, for each «.

Furthermore, h is unique. Conversely, if the groups G, generate G and the extension
condition (x) holds, then G is the direct sum of the groups G.

Proof. 'We show first that if G has the stated extension property, then G is the direct
sum of the G,. Suppose x = Y_ x4 = Y yo; We show that for any particular index 8,
we have xg = yg. Let H denote the group Gg; and let by : G4 — H be the
trivial homomorphism for « # B, and the identity homomorphism for « = B. Let
h : G — H be the hypothesized extension of the homomorphisms 4,. Then

h(x) =) halxe) = xp,
h(x) = ha(ya) = yp,

so that xg = yg. ;

Now we show that if G is the direct sum of the G,, then the extension condition
holds. Given homomorphisms /,, we define A (x) as follows: If x = ) x,, set h(x) =
> hy(xy). Because this sum is finite, it makes sense; because the expression for x is
unique, & is well-defined. One checks readily that 4 is the desired homomorphism.
Uniqueness follows by noting that & must satisfy this equation if it is a homomorphism
that equals 4, on G4 for each . n

This lemma makes a number of results about direct sums quite easy to prove:

Corollary 67.2. Let G = G| & G. Suppose G is the direct sum of subgroups Hy
fora € J, and G is the direct sum of subgroups Hg for B € K, where the index sets J
and K are disjoint. Then G is the direct sum of the subgroups H,, fory € J UK.
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Proof. If hy : Hy, — H and hg : Hg — H are families of homomorphisms, they
extend to homomorphisms #; : G| — H and h; : G, — H by the preceding lemma.
Then h| and h; extend to a homomorphism s : G — H. n

This corollary implies, for example, that

(G18G)DG3=G1BGC2BG3 =G D (G2 Ga).

Corollary 67.3. IfG = G| & G, then G/ G is isomorphic to G .

Proof. Let H = Gy, let hy : G; — H be the identity homomorphism, and let
hy : G, — H be the trivial homomorphism. Let 4 : G — H be their extension to G.
Then h is surjective with kernel G». |

In many situations, one is given a family of abelian groups {G,} and one wishes
to find a group G that contains subgroups G, isomorphic to the groups G4, such that
G is the direct sum of these subgroups. This can in fact always be done; it leads to a
notion called the external direct sum.

Definition. Let {G4}qcs be an indexed family of abelian groups. Suppose that G is
an abelian group, and that i, : G, — G is a family of monomorphisms, such that G
is the direct sum of the groups i, (G4). Then we say that G is the external direct sum
of the groups G, relative to the monomorphisms i .

The group G is not unique, of course; we show later that it is unique up to isomor-
phism. Here is one way of constructing G:

Theorem 67.4. Given a family of abelian groups {G,}qcJ, there exists an abelian
group G and a family of monomorphisms iy : G — G such that G is the direct sum
of the groups iy (Gy).

Proof. Consider first the cartesian product

l—[Ga;

ael

it is an abelian group if we add two J-tuples by adding them coordinate-wise. Let G
denote the subgroup of the cartesian product consisting of those tuples (xy)qes such
that x, = Oq, the identity element of G4, for all but finitely many values of a. Given
an index B, define ig : Gg — G by letting ig(x) be the tuple that has x as its Bth
coordinate and Oy as its ath coordinate for all « # B. It is immediate that ig is a
monomorphism. It is also immediate that since each element x of G has only finitely
many nonzero coordinates, X can be written uniquely as a finite sum of elements from
the groups ig(Gg). |



410 The Seifert-van Kampen Theorem Ch. 11

The extension condition that characterizes ordinary direct sums translates imme-
diately into an extension condition for external direct sums:

Lemma 67.5. Let {Gylqecs be an indexed family of abelian groups; let G be an
abelian group; let iy : G4 — G be a family of homomorphisms. If each iy is a
monomorphism and G is the direct sum of the groups iy (Gy), then G satisfies the
following extension condition:

Given any abelian group H and any family of homomorphisms hy, :
(x) G, — H, there exists a homomorphism h : G — H such that
hoiy = hy foreach«a.

Furthermore, h is unique. Conversely, suppose the groups iy (G) generate G and the
extension condition (x) holds. Then each i, is a monomorphism, and G is the direct
sum of the groups iy (Gy).

Proof. 'The only part that requires proof is the statement that if the extension con-
dition holds, then each i, is a monomorphism. That is proved as follows. Given an
index B, set H = Gg and let hy : G4 — H be the identity homomorphism if @ = B,
and the trivial homomorphism if « % B. Let h : G — H be the hypothesized exten-
sion. Then in particular, & o ig = hg; it follows that ig is injective. |

An immediate consequence is a uniqueness theorem for direct sums:

Theorem 67.6 (Uniqueness of direct sums). Let {Gy}ycs be a family of abelian
groups. Suppose G and G’ are abelian groups and iy : Go — G andi, : G4 — G’
are families of monomorphisms, such that G is the direct sum of the groups iy (G)
and G’ is the direct sum of the groups i.,(G4). Then there is a unique isomorphism
¢ : G — G’ suchthat¢ oiy =i, foreacha.

Proof. We apply the preceding lemma (four times!). Since G is the external direct
sum of the G4 and {i,,} is a family of homomorphisms, there exists a unique homomor-
phism ¢ : G — G’ such that ¢ o iy = i/, for each «. Similarly, since G’ is the external
direct sum of the G, and {iy} is a family of homomorphisms, there exists a unique
homomorphism ¢ : G’ — G such that Y o i/, = iy foreacha. Now Yy o9 : G - G
has the property that ¢ o ¢ o iy, = iy for each «; since the identity map of G has
the same property, the uniqueness part of the lemma shows that ¢ o ¢ must equal the
identity map of G. Similarly, ¢ o ¥ must equal the identity map of G’. [

If G is the external direct sum of the groups G4, relative to the monomorphisms g,
we sometimes abuse notation and write G = €P G, even though the groups G, are
not subgroups of G. That is, we identify each group G, with its image under i, and
treat G as an ordinary direct sum rather than an external direct sum. In each case, the
context will make the meaning clear.

Now we discuss free abelian groups.
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Definition. Let G be an abelian group and let {a,} be an indexed family of elements
of G; let G, be the subgroup of G generated by a,. If the groups G, generate G, we
also say that the elements a,, generate G. If each group G, is infinite cyclic, and if G
is the direct sum of the groups G,, then G is said to be a free abelian group having
the elements {a, } as a basis.

The extension condition for direct sums implies the following extension condition
for free abelian groups:

Lemma 67.7. Let G be an abelian group; let {ay }ocs be a family of elements of G
that generates G. Then G is a free abelian group with basis {a,} if and only if for any
abelian group H and any family {y,} of elements of H, there is a homomorphism h
of G into H such that h(a,) = yq for each «. In such case, h is unique.

Proof. Let G, denote the subgroup of G generated by a,. Suppose first that the
extension property holds. We show first that each group G, is infinite cyclic. Suppose
that for some index B, the element ag generates a finite cyclic subgroup of G. Then
if we set H = Z, there is no homomorphism 4 : G — H that maps each a, to the
number 1. For ag has finite order and 1 does not! To show that G is the direct sum of
the groups G4, we merely apply Lemma 67.1.

Conversely, if G is free abelian with basis {a,}, then given the elements {yy} of
H, there are homomorphisms sy : Go — H such that hy(ay) = yo (because G4 is

infinite cyclic). Then Lemma 67.1 applies. n
Theorem 67.8. If G is a free abelian group with basis {ay, . . ., a,}, then n is uniquely
determined by G.

Proof. The group G is isomorphic to the n-fold product Z x - - - x Z; the subgroup 2G
corresponds to the product (2Z) x --- x (2Z). Then the quotient group G/2G is
in bijective correspondence with the set (Z/2Z) x --- x (Z/2Z), so that G/2G has
cardinality 2”. Thus n is uniquely determined by G. [

If G is a free abelian group with a finite basis, the number of elements in a basis
for G is called the rank of G.

Exercises
1. Suppose that G = Y G4. Show this sum is direct if and only if the equation
Xg + -+ Xxq, =0

implies that each x4, equals 0. (Here xo; € G4, and the indices «; are distinct.)

2. Show that if G is a subgroup of G, there may be no subgroup G, of G such that
G =G ® Gy [Hint: Set G = Z and G = 27Z.]
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3. If G is free abelian with basis {x, y}, show that {2x 4+ 3y, x — y} is also a basis
for G.

4. The order of an element a of an abelian group G is the smallest positive integer m
such that ma = 0, if such exists; otherwise, the order of a is said to be infinite.
The order of a thus equals the order of the subgroup generated by a.

(a) Show the elements of finite order in G form a subgroup of G, called its
torsion subgroup.

(b) Show that if G is free abelian, it has no elements of finite order.

(c) Show the additive group of rationals has no elements of finite order, but is
not free abelian. [Hint: If {a,} is a basis, express %aa in terms of this basis.]

5. Give an example of a free abelian group G of rank n having a subgroup H of
rank n for which H # G.

6. Prove the following:
Theorem. If A is a free abelian group of rank n, then any subgroup B of A is a
free abelian group of rank at most n.
Proof. We can assume A = Z", the n-fold cartesian product of Z with itself. Let
w; « Z" — Z be projection on the ith coordinate. Given m < n, let B,, consist
of all elements x of B such that x;(x) = 0 fori > m. Then B,, is a subgroup
of B.

Consider the subgroup r,,(B,,) of Z. If this subgroup is nontrivial, choose
Xm € By, so that 7, (X,,) is a generator of this subgroup. Otherwise, set x,, = 0.
(a) Show {xi, ..., X} generates B,,, for each m.

(b) Show the nonzero elements of {xy, ..., X,,} form a basis for B,,, for each m.
(c) Show that B, = B is free abelian with rank at most n.

§68 Free Products of Groups

We now consider groups G that are not necessarily abelian. In this case, we write G
multiplicatively. We denote the identity element of G by 1, and the inverse of the
element x by x~ 1. The symbol x” denotes the n-fold product of x with itself, x™"
denotes the n-fold product of x~! with itself, and x® denotes 1.

In this section, we study a concept that plays a role for arbitrary groups similar to
that played by the direct sum for abelian groups. It is called the free product of groups.

Let G be a group. If {G,}acs is a family of subgroups of G, we say (as before)
that these groups generate G if every element x of G can be written as a finite product
of elements of the groups G,. This means that there is a finite sequence (xj, ..., Xp)
of elements of the groups G, such that x = x; ---x,. Such a sequence is called a
word (of length n) in the groups G; it is said to represent the element x of G.

Note that because we lack commutativity, we cannot rearrange the factors in the
expression for x so as to group together factors that belong to a single one of the groups
Go. However, if x; and x;; both belong to the same group G4, we can group them
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together, thereby obtaining the word

(X1, v oy Xim 1y XiXig 1, Xig2s oo+ s Xn),

of length n — 1, which also represents x. Furthermore, if any x; equals 1, we can
delete x; from the sequence, again obtaining a shorter word that represents x.
Applying these reduction operations repeatedly, one can in general obtain a word
representing x of the form (yi, ..., ym), where no group G, contains both y; and y; 11,
and where y; # 1 for all i. Such a word is called a reduced word. This discussion
does not apply, however, if x is the identity element of G. For in that case, one might
represent x by a word such as (a, a~!), which reduces successively to the word (aa~!)
of length one, and then disappears altogether! Accordingly, we make the convention
that the empty set is considered to be a reduced word (of length zero) that represents the
identity element of G. With this convention, it is true that if the groups G, generate G,
then every element of G can be represented by a reduced word in the elements of the

groups G.
Note that if (xy, ..., x,) and (yy, ..., ym) are words representing x and y, respec-
tively, then (x1, ..., X, Y1, ..., Ym) is @ word representing xy. Even if the first two

words are reduced words, however, the third will not be a reduced word unless none
of the groups G, contains both x, and y;.

Definition. Let G be a group, let {G4}ocs be a family of subgroups of G that gener-
ates G. Suppose that G, N G g consists of the identity element alone whenever o # £.
We say that G is the free product of the groups G, if for each x € G, there is only
one reduced word in the groups G, that represents x. In this case, we write

G:ﬁGa,

act
or in the finite case, G = G * - - - x G,.

Let G be the free product of the groups G4, and let (x, ..., x,) be a word in the
groups G, satisfying the condition x; # 1 for all i. Then, for each /, there is a unique
index «a; such that x; € G, ; to say the word is a reduced word is to say simply that
a; # a;4+1 foreachi.

Suppose the groups G, generate G, where G, N Gg = {1} for o # B. In order
for G to be the free product of these groups, it suffices to know that the representation
of 1 by the empty word is unique. For suppose this weaker condition holds, and
suppose that (xj, ..., x,) and (y1, ..., Ym) are two reduced words that represent the
same element x of G. Let a; and 8; be the indices such that x; € G4, and y; € Gg,.
Since

the word
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represents 1. It must be possible to reduce this word, so we must have a; = f; the
word then reduces to the word

-1 -1
s veos Y] X1s ey Xn).

Again, it must be possible to reduce this word, so we must have yl_lxl = 1. Then
X1 = y1, so that 1 is represented by the word

-1 -1
(ym $"-1y2 ,x27---,xn)-

The argument continues similarly. One concludes finally that m = n and x; = y; for
all i.

EXAMPLE 1. Consider the group P of bijections of the set {0, 1, 2} with itself. For
i = 1, 2, define an element ; of P by setting 7;(i) = i — 1 and 7;(/ — 1) = i and
;i (j) = j otherwise. Then 7r; generates a subgroup G; of P of order 2. The groups G
and G, generate P, as you can check. But P is not their free product. The reduced words
(rry, m2, 1) and (2, my, m2), for instance, represent the same element of P.

The free product satisfies an extension condition analogous to that satisfied by the
direct sum:

Lemma 68.1. Let G be a group; let {G,} be a family of subgroups of G. If G is the
free product of the groups G, then G satisfies the following condition:

Given any group H and any family of homomorphisms hy : G4 —
(%) H, there exists a homomorphism h : G — H whose restriction to Gy
equals hy, for each «.

Furthermore, h is unique.

The converse of this lemma holds, but the proof is not as easy as it was for direct
sums. We postpone it until later.

Proof. Given x € G with x # 1, let (xy, ..., x,) be the reduced word that repre-
sents x. If h exists, it must satisfy the equation

(%) h(x) = h(x1) - - - h(xn) = hq,(x1) - - - hg, (xn),

where o; is the index such that x; € G,. Hence A is unique.

To show h exists, we define it by equation (x) if x # 1, and we set A(1) = 1.
Because the representation of x by a reduced word is unique, h is well-defined. We
must show it is a homomorphism.

We first prove a preliminary result. Given a word w = (xy, ..., x,) of positive
length in the elements of the groups G, let us define ¢ (w) to be the element of H
given by the equation

(k) ¢(w) = hg (x1) -+ ha,(xn),
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where «; is any index such that x; € G4,. Now «; is unique unless x; = 1; hence ¢
is well-defined. If w is the empty word, let ¢ (w) equal the identity element of H. We
show that if w’ is a word obtained from w by applying one of our reduction operations,
d(w') = d(w).

Suppose first that w’ is obtained by deleting x; = 1 from the word w. Then the
equation ¢ (w') = ¢ (w) follows from the fact that h,, (x;) = 1. Second, suppose that
a; = «;j4+1 and that

w’ = (xl,...,xixi+1, ...,x,,).
The fact that
ha(xi)ha(xi+l) = ha(xixi—l-l),

where ¢ = «; = «;41, implies that ¢(w) = ¢ (w').

It follows at once that if w is any word in the groups G, that represents x, then
h(x) = ¢(w). For by definition of A, this equation holds for any reduced word w; and
the process of reduction does not change the value of ¢.

Now we show that 4 is a homomorphism. Suppose that w = (xy,..., x,) and
w’ = (y1,..., ym) are words representing x and y, respectively. Let (w, w’) denote
the word (x1, ..., X, ¥1, - - -, Ym), Which represents xy. It follows from equation (*x)
that ¢ (w, w') = ¢(w)¢(w’). Then h(xy) = h(x)h(y). [ |

We now consider the problem of taking an arbitrary family of groups {G,} and
finding a group G that contains subgroups G|, isomorphic to the groups G, such that
G is the free product of the groups G,,. This can, in fact, be done; it leads to the notion
of external free product.

Definition. Let {G4}qcs be an indexed family of groups. Suppose that G is a group,
andthati, : G, — G is a family of monomorphisms, such that G is the free product of
the groups iy (Gy). Then we say that G is the external free product of the groups G,
relative to the monomorphisms i, .

The group G is not unique, of course; we show later that it is unique up to iso-
morphism. Constructing G is much more difficult than constructing the external direct
sum was:

Theorem 68.2. Given a family {Gq}aes of groups, there exists a group G and a
family of monomorphisms iy : G4 — G such that G is the free product of the groups
ia(Ga).

Proof. For convenience, we assume that the groups G, are disjoint as sets. (This can
be accomplished by replacing G, by G, x {a} for each index «, if necessary.)

Then as before, we define a word (of length n) in the elements of the groups G4
to be an n-tuple w = (x, ..., x,) of elements of | J G,. It is called a reduced word
if o # a4 for all i, where «; is the index such that x; € G, and if for each i, x;
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is not the identity element of G,,. We define the empty set to be the unique reduced
word of length zero. Note that we are not given a group G that contains all the G, as
subgroups, so we cannot speak of a word “representing” an element of G.

Let W denote the set of all reduced words in the elements of the groups G,. Let
P (W) denote the set of all bijective functions 7 : W — W. Then P(W) is itself
a group, with composition of functions as the group operation. We shall obtain our
desired group G as a subgroup of P(W).

Step 1. For each index a and each x € G,, we defineasetmapn, : W —> W. It
will satisfy the following conditions:
(1) If x = 1, the identity element of G, then 7, is the identity map of W.
(2) If x,y € G4 and z = xy, then 7, = 71, o my.
We proceed as follows: Let x € G4. For notational purposes, let w = (x1, ..., Xp)

denote the general nonempty element of W, and let a; denote the index such that
x1 € Gq,. If x # 14, define ;. as follows:

(1) 7. (D) = (x),

(ii) wy(w) = (x, x1,...,Xp) if ) # a,

(iii) me(w) = (xx1,..., Xn) ifa; =aand x; # x‘l,
@iv) ne(w) = (x2,...,x5) if ;] = a and x =x"1

If x = 1,, define 7, to be the identity map of W.

Note that the value of m, is in each case a reduced word, that is, an element of W.
In cases (i) and (ii), the action of m, increases the length of the word; in case (iii) it
leaves the length unchanged, and in case (iv) it reduces the length of the word. When
case (iv) applies to a word w of length one, it maps w to the empty word.

Step 2. We show that if x, y € G and z = xy, then ; = 7y o my.

The result is trivial if either x or y equals 14, since in that case m, or my is the
identity map. So let us assume henceforth that x # 1, and y # 1,. We compute the
values of 7, and of 7, oy on the reduced word w. There are four cases to consider.

(i) Suppose w is the empty word. We have (&) = (). If z = 14, then y = x~
and w7y () = & by (iv), while 7,(2) equals the same thing because =, is the
identity map. If z # 14, then

1

ey (D) = (xy) = (2) = m;(9).

In the remaining cases, we assume w = (x1 ..., xp), With x; € Gg,.
(i) Suppose a # ;. Then my(w) = (¥, X1,...,Xn). Iff z = 4, theny = x!
and myy(w) = (x1, ..., X,) by (iv), while 7, (w) equals the same because 7 is the

identity map. If z # 14, then

”X”y(w) = ('xy’ xla LRI axfl)

=(z,x1,...,%,) = m(w).
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(1ii) Suppose o = «a; and yx; # 1,. Then my(w) = (yx1,x2, ..., x,). fxyx; =
lg, then ey (w) = (x2, ..., Xn), While 7, (w) equals the same thing because zx; =
xyxy = lg. If xyx) # 14, then

Ty y(w) = (XyX1, X2, ..., Xn)
= (2Xx1, X2, ..., Xp) = M, (W).
(iv) Finally, suppose a = o) and yx; = 1,. Then my(w) = (x2, ..., xp), which is

empty if n = 1. We compute

mey(w) = (X, X2, ..., Xn)
= (x(yx1), X2, ..., Xn)
= (Z'xl) x2’ LI ’xn) = nz(w)-

Step 3. The map 7, is an element of p(W), and the map iy, : G4 — P(W) defined
by iy (x) = m, is a monomorphism.

To show that =, is bijective, we note that if y = x~!, then conditions (1) and (2)
imply that wyom, and 7, oy equal the identity map of W. Hence n, belongs to P(W).
The fact that i, 1s a homomorphism is a consequence of condition (2). To show that i,
is a monomorphism, we note that if x # 14, then 7, (&) = (x), so that 7, is not the
identity map of W.

Step 4. Let G be the subgroup of P(W) generated by the groups G, = iq(Ga).
We show that G is the free product of the groups G,.

First, we show that G|, N G% consists of the identity alone if « # B. Let x € G,
and y € Gg; we suppose that neither 7, nor my is the identity map of W and show that
mx # my. But this is easy, for 7, () = (x) and 7y () = (¥), and these are different
words.

Second, we show that no nonempty reduced word

w' = (Txys o evy Mxy)

in the groups G, represents the identity element of G. Let «; be the index such that
x; € Gq;; then o; # a4 and x; # 1q, for each i. We compute

Tx, (xy (- - - (7T, (D)) = (X1, ..., Xn),

so the element of G represented by w' is not the identity element of P(W). n

Although this proof of the existence of free products is certainly correct, it has the
disadvantage that it doesn’t provide us with a convenient way of thinking about the
elements of the free product. For many purposes this doesn’t matter, for the extension
condition is the crucial property that is used in the applications. Nevertheless, one
would be more comfortable having a more concrete model for the free product.

For the external direct sum, one had such a model. The external direct sum of
_ the abelian groups G consisted of those elements (x,) of the cartesian product [1G«
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such that x, = Oy for all but finitely many a. And each group Gg was isomorphic to
the subgroup G:B consisting of those (x,) such that x, = 0, for all @ # B.

Is there a similar simple model for the free product? Yes. In the last step of the
preceding proof, we showed that if (,,, ..., 7y,) is areduced word in the groups G,
then

nxl(”X2(' o (”x"(g)))) = (xlv L] xn)-

This equation implies that if 7 is any element of P(W) belonging to the free prod-
uct G, then the assignment m1 — 7 (&) defines a bijective correspondence between G
and the set W itself! Furthermore, if v and 5’ are two elements of G such that

7(@)=(x1,...,x,) and 7'(D)=(1,..., W),

then 7 (;r/(2)) is the word obtained by taking the word (x, ..., x,, y1, ..., ) and
reducing it!

This gives us a way of thinking about the group G. One can think of G as being
simply the set W itself, with the product of two words obtained by juxtaposing them
and reducing the result. The identity element corresponds to the empty word. And
each group Gg corresponds to the subset of W consisting of the empty set and all
words of length 1 of the form (x), forx € Gg and x # lg.

An immediate question arises: Why didn’t we use this notion as our definition of
the free product? It certainly seems simpler than going by way of the group P (W)
of permutations of W. The answer is this: Verification of the group axioms is very
difficult if one uses this as the definition; associativity in particular is horrendous. The
preceding proof of the existence of free products is a model of simplicity and elegance
by comparison!

The extension condition for ordinary free products translates immediately into an
extension condition for external free products:

Lemma 68.3. Let{G,} be a family of groups; let G be a group; letiy : G4 — G be
a family of homomorphisms. If each i, is a monomorphism and G is the free product
of the groups i, (G, ), then G satisfies the following condition:

Given a group H and a family of homomorphisms hy : G4 — H,
(%) there exists a homomorphism h : G — H such thath o iy, = h, for
each a.

Furthermore, h is unique.

An immediate consequence is a uniqueness theorem for free products; the proof is
very similar to the corresponding proof for direct sums and is left to the reader.

Theorem 68.4 (Uniqueness of free products). Let {Gy}qcs be a family of groups.
Suppose G and G’ are groups and iy : G4 — G and i, : Go — G’ are families
of monomorphisms, such that the families {io(G4)} and {i, (G4)} generate G and G’,
respectively. If both G and G’ have the extension property stated in the preceding
lemma, then there is a unique isomorphism ¢ : G — G’ such that ¢oiy, = i,, forall .
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Now, finally, we can prove that the extension condition characterizes free products,
proving the converses of Lemmas 68.1 and 68.3.

Lemma 68.5. Let{Gqy}oes be a family of groups; let G be a group; letiy : G, —> G
be a family of homomorphisms. If the extension condition of Lemma 68.3 holds, then
each i, is a monomorphism and G is the free product of the groups i, (G,).

Proof. We first show that each i, is a monomorphism. Given an index B, let us set
H = Gg. Lethy : Go — H be the identity if & = B, and the trivial homomorphism
ifa # B. Let h : G —» H be the homomorphism given by the extension condition.
Then h o ig = hg, so that ig is injective.

By Theorem 68.2, there exists a group G’ and a family i/, : G4 — G’ of monomor-
phisms such that G’ is the free product of the groups i/,(G,). Both G and G’ have the
extension property of Lemma 68.3. The preceding theorem then implies that there is
an isomorphism ¢ : G — G’ such that ¢ o iy = i,. It follows at once that G is the
free product of the groups iy (G4 ). [ ]

We now prove two results analogous to Corollaries 67.2 and 67.3.

Corollary 68.6. Let G = G *x G,, where G is the free product of the subgroups
{Ha}aes and G is the free product of the subgroups {Hg}gek . If the index sets J
and K are disjoint, then G is the free product of the subgroups {Hy }, ¢ juk -

Proof. The proof is almost a copy of the proof of Corollary 67.2. [ |

This result implies in particular that
G1xGrxG3 =G (G xG3) = (G *xGy) *Gs.

In order to state the next theorem, we must recall some terminology from group
theory. If x and y are elements of a group G, we say that y is conjugate to x if y =
cxc™! for some ¢ € G. A normal subgroup of G is one that contains all conjugates of
its elements.

If S is a subset of G, one can consider the intersection N of all normal subgroups
of G that contain S. It is easy to see that N is itself a normal subgroup of G; it is called
the least normal subgroup of G that contains S.

Theorem 68.7. Let G = G| * G,. Let N; be a normal subgroup of G;, fori =1, 2.
If N is the least normal subgroup of G that contains N1 and N,, then

G/N = (G1/N1) * (G2/N2).
Proof. The composite of the inclusion and projection homomorphisms

Gy — G xGy, — (G *Gy)/N
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carries N to the identity element, so that it induces a homomorphism
i1:G1/N1 — (G1*G3y)/N.

Similarly, the composite of the inclusion and projection homomorphisms induces a
homomorphism

i:G2/N; — (G *Gy)/N.

We show that the extension condition of Lemma 68.5 holds with respect to iy and i3;
it follows that i and i; are monomorphisms and that (G| * G;)/N is the external free
product of G1/N; and G3/ N, relative to these monomorphisms.

Soleth; : Gi/N1 > H and hy : Gp/N> — H be arbitrary homomorphisms.
The extension condition for G| * G implies that there is a homomorphism of G| * G,
into H that equals the composite

G,‘ e d G[/N,' —> H

of the projection map and h; on G;, for i = 1, 2. This homomorphism carries the
elements of N; and N; to the identity element, so its kernel contains N. Therefore
it induces a homomorphism ~ : (G| * G2)/N — H that satisfies the conditions
hi=hoijand hy =hoij. [ ]

Corollary 68.8. If N is the least normal subgroup of G| * G that contains G1, then
(G1 *G)/N = G,.

The notion of “least normal subgroup” is a concept that will appear frequently as
we proceed. Obviously, if N is the least normal subgroup of G containing the subset §
of G, then N contains S and all conjugates of elements of S. For later use, we now
verify that these elements actually generate N.

Lemma 68.9. Let S be a subset of the group G. If N is the least normal subgroup
of G containing S, then N is generated by all conjugates of elements of S.

Proof. Let N’ be the subgroup of G generated by all conjugates of elements of S.
We know that N’ C N to verify the reverse inclusion, we need merely show that N’
is normal in G. Given x € N’ and ¢ € G, we show that cxc~! € N’.

We can write x in the form x = x1x;---x,, where each x; is conjugate to an
element s; of S. Then cx;c~! is also conjugate to s;. Because

cxc = (cxlc_l)(cxzc_l) e (cx,,c'l),

cxc~! is a product of conjugates of elements of S, so that cxc™! € N/, as desired. W
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Exercises

1. Check the details of Example 1.

2. Let G = G| * G, where G| and G are nontrivial groups.

(a) Show G is not abelian.

(b) If x € G, define the length of x to be the length of the unique reduced word
in the elements of G; and G, that represents x. Show that if x has even
length (at least 2), then x does not have finite order. Show that if x has odd
length, then x is conjugate to an element of shorter length.

(c) Show that the only elements of G that have finite order are the elements
of G| and G that have finite order, and their conjugates.

3. Let G = G; * G,. Given ¢ € G, let cGc~! denote the set of all elements of
the form cxc™!, for x € G;. Itis a subgroup of G; show that its intersection
with G, consists of the identity alone.

4. Prove Theorem 68.4.

§69 Free Groups

Let G be a group; let {a,} be a family of elements of G, fora € J. We say the
elements {ay } generate G if every element of G can be written as a product of powers
of the elements a,. If the family {a4} is finite, we say G is finitely generated.

Definition. Let {a,} be a family of elements of a group G. Suppose each a, generates
an infinite cyclic subgroup G4 of G. If G is the free product of the groups {G,}, then
G is said to be a free group, and the family {a,} is called a system of free generators
for G.

In this case, for each element x of G, there is a unique reduced word in the ele-
ments of the groups G, that represents x. This says thatif x # 1, then x can be written
uniquely in the form

X = (a£!|)nl v (aak)nk’

where «; # ;41 and n; # 0 for each i. (Of course, n; may be negative.)
Free groups are characterized by the following extension property:

Lemma 69.1. Let G be a group; let {ay}qcs be a family of elements of G. If G
is a free group with system of free generators {a,}, then G satisfies the following
condition:

Given any group H and any family {y,} of elements of H, there is a

(%) homomorphismh : G — H such that h(ay) = y, for each a.

Furthermore, h is unique. Conversely, if the extension condition (x) holds, then G is a
free group with system of free generators {a,}.
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Proof. If G is free, then for each «, the group G, generated by a, is infinite cyclic,
so there is a homomorphism hy : G, — H with hy(ay) = yo. Then Lemma 68.1
applies. To prove the converse, let B be a fixed index. By ‘hypothesis, there exists a
homomorphism 4 : G — Z such that h(ag) = 1 and h(ay) = O for @ # B. It follows
that the group G is infinite cyclic. Then Lemma 68.5 applies. [ |

The results of the preceding section (in particular, Corollary 68.6) imply the fol-
lowing:

Theorem 69.2. Let G = G * G, where G and G, are free groups with {ay}qey
and {aq }ack as respective systems of free generators. If J and K are disjoint, then G
is a free group with {ay}acsuk as a system of free generators.

Definition. Let {a,}qcs be an arbitrary indexed family. Let G, denote the set of all
symbols of the form a/, for n € Z. We make G, into a group by defining
n m __ n_+m‘

ay "G, =4y

Then a is the identity element of G, and a;" is the inverse of a?. We denote a}

simply by a,. The external free product of the groups {G4} is called the free group
on the elements a,.

If G is the free group on the elements a,, we normally abuse notation and identify
the elements of the group G, with their images under the monomorphism iy : G4 —
G involved in the construction of the external free product. Then each a4 is treated as
an element of G, and the family {a,} forms a system of free generators for G.

There is an important connection between free groups and free abelian groups. In
order to describe it, we must recall the notion of commutator subgroup from algebra.

Definition. Let G be a group. If x, y € G, we denote by [x, y] the element

[x, y] = xyx~ty~!

of G; it is called the commutator of x and y. The subgroup of G generated by the set
of all commutators in G is called the commutator subgroup of G and denoted [G, G].

The following result may be familiar; we provide a proof, for completeness:

Lemma 69.3. Given G, the subgroup [G, G] is a normal subgroup of G and the quo-
tient group G /|G, G] is abelian. If h : G — H is any homomorphism from G to an
abelian group H, then the kernel of h contains [G, G], so h induces a homomorphism
k:G/IG,G]l—> H.
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Proof. Step 1. First we show that any conjugate of a commutator is in [G, G]. We
compute as follows:

1 1

=glryx "'y hg~
= (gxyx " H(H»~'g™hH

= (gxyx" Ny ye) vl
= ((gx)y(gx) 'y Nygy g™
= [gx, y]- Ly, gl

which is in [G, G], as desired.

Step 2. We show that [G, G] is a normal subgroup of G. Let z be an arbitrary
element of [G, G]; we show that any conjugate gzg'1 of z is also in [G, G]. The
element z is a product of commutators and their inverses. Because

glx, ylg™

[x, 17! = Geyx~'y™H ™ = [y, x],
z actually equals a product of commutators. Let z = z;---z,, where each z; is a
commutator. Then
828 = (gz187")(gz28™") - - (gzng™"),

which is a product of elements of [G, G] by Step 1 and hence belongs to [G, G].

Step 3. We show that G/[G, G] is abelian. Let G’ = [G, G]; we wish to show that

@G (bG) = (bG')(aG'),
that is, abG’ = baG’. This is equivalent to the equation
a~'b7'abG = G,

and this equation follows from the fact that a~'b~!ab = [a~!, b~!], which is an
element of G’.

Step 4. To complete the proof, we note that because H is abelian, h carries each

commutator to the identity element of H. Hence the kernel of & contains [G, G], so
that 4 induces the desired homomorphism & . [ |

Theorem 69.4. If G is a free group with free generators a,, then G/|G, G] is a free
abelian group with basis [ay ], where [ay] denotes the coset of ay in G/[G, G].

Proof. We apply Lemma 67.7. Given any family {y,} of elements of the abelian
group H, there exists a homomorphism h : G — H such that h(ay) = yu for each a.
Because H is abelian, the kernel of & contains [G, G]; therefore A induces a homo-
morphism &k : G/[G, G] — H that carries [ay] tO yq. |

Corollary 69.5. If G is a free group with n free generators, then any system of free
generators for G has n elements.

Proof. 'The free abelian group G/[G, G] has rank n. [ |
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The properties of free groups are in many ways similar to those of free abelian
groups. For instance, if H is a subgroup of a free abelian group G, then H itself is
a free abelian group. (The proof in the case where G has finite rank is outlined in
Exercise 6 of §67; the proof in the general case is similar.) The analogous result holds
for free groups, but the proof is considerably more difficult. We shall give a proof in
Chapter 14 that is based on the theory of covering spaces.

In other ways, free groups are very different from free abelian groups. Given a free
abelian group of rank n, the rank of any subgroup is at most n; but the analogous result
for free groups does not hold. If G is a free group with a system of » free generators,
then the cardinality of a system of free generators for a subgroup of G may be greater
than »; it may even be infinite! We shall explore this situation later.

Generators and relations

A basic problem in group theory is to determine, for two given groups, whether or not
they are isomorphic. For free abelian groups, the problem is solved; two such groups
are isomorphic if and only if they have bases with the same cardinality. Similarly, two
free groups are isomorphic if and only if their systems of free generators have the same
cardinality. (We have proved these facts in the case of finite cardinality.)

For arbitrary groups, however the answer is not so simple. Only in the case of an
abelian group that is finitely generated is there a clear-cut answer.

If G is abelian and finitely generated, then there is a fundamental theorem to the
effect that G is the direct sum of two subgroups, G = H @ T, where H is free abelian
of finite rank, and T is the subgroup of G consisting of all elements of finite order. (We
call T the torsion subgroup of G.) The rank of H is uniquely determined by G, since
it equals the rank of the quotient of G by its torsion subgroup. This number is often
called the betti number of G. Furthermore, the subgroup T is itself a direct sum; it
is the direct sum of a finite number of finite cyclic groups whose orders are powers of
primes. The orders of these groups are uniquely determined by T (and hence by G),
and are called the elementary divisors of G. Thus the isomorphism class of G is
completely determined by specifying its betti number and its elementary divisors.

If G is not abelian, matters are not nearly so satisfactory, even if G is finitely
generated. What can we specify that will determine G? The best we can do is the
following:

Given G, suppose we are given a family {ay}qc s Of generators for G. Let F be the
free group on the elements {a,}. Then the obvious map h(ay) = a4 of these elements
into G extends to a homomorphism 4 : F — G that is surjective. If N equals the
kernel of h, then F/N = G. So one way of specifying G is to give a family {a,}
of generators for G, and somehow to specify the subgroup N. Each element of N is
called a relation on F, and N is called the relations subgroup. We can specify N by
giving a set of generators for N. But since N is normal in F, we can also specify N
by a smaller set. Specifically, we can specify N by giving a family {rg} of elements
of F such that these elements and their conjugates generate N, that is, such that N is
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the least normal subgroup of F that contains the elements rg. In this case, we call the
family {rg} a complete set of relations for G.

Each element of N belongs to F, so it can of course be represented uniquely by a
reduced word in powers of the generators {a,}. When we speak of a relation on the
generators of G, we sometimes refer to this reduced word, rather than to the element
of N it represents. The context will make the meaning clear.

Definition. If G is a group, a presentation of G consists of a family {ay} of gen-
erators for G, along with a complete set {rg} of relations for G, where each rg is an
element of the free group on the set {a,}. If the family {a,} is finite, then G is finitely
generated, of course. If both the families {ay} and {rg} are finite, then G is said to be
finitely presented, and these families form what is called a finite presentation for G.

This procedure for specifying G is far from satisfactory. A presentation for G does
determine G uniquely, up to isomorphism; but two completely different presentations
can lead to groups that are isomorphic. Furthermore, even in the finite case there is no
effective procedure for determining, from two different presentations, whether or not
the groups they determine are isomorphic. This result is known as the “unsolvability
of the isomorphism problem” for groups.

Unsatisfactory as it is, this is the best we can do!

Exercises

1. If G = G * G3, show that
G/IG, G] = (G1/[Gy1, G1]) ® (G2/[G2, G2]).

[Hint: Use the extension condition for direct sums and free products to define
homomorphisms

G/IG, G] <= (G1/1G1, G1)) ® (G2/1G2, G2])

that are inverse to each other.]
2. Generalize the result of Exercise 1 to arbitrary free products.

3. Prove the following:
Theorem. LetG = G| * G|, where G| and G, are cyclic of orders m and n,
respectively. Then m and n are uniquely determined by G.
Proof.
(a) Show G/[G, G] has order mn.
(b) Determine the largest integer k such that G has an element of order k. (See
Exercise 2 of §68.)
(c) Prove the theorem. ,
4. Show that if G = G| & G3, where G| and G; are cyclic of orders m and n,
respectively, then m and n are not uniquely determined by G in general. [Hint:
If m and n are relatively prime, show that G is cyclic of order mn.]
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§70 The Seifert-van Kampen Theorem

We now return to the problem of determining the fundamental group of a space X that
is written as the union of two open subsets U and V having path-connected intersec-
tion. We showed in §59 that, if xg € U N V, the images of the two groups 7y (U, xo)
and ) (V, xp) in 71 (X, xg), under the homomorphisms induced by inclusion, generate
the latter group. In this section, we show that ; (X, xp) is, in fact, completely deter-
mined by these two groups, the group 71 (U NV, xp), and the various homomorphisms
of these groups induced by inclusion. This is a basic result about fundamental groups.
It will enable us to compute the fundamental groups of a number of spaces, including
the compact 2-manifolds.

Theorem 70.1 (Seifert-van Kampen theorem). Let X = U UV, where U and V
are open in X ; assume U, V, and U NV are path connected; letxo € UNV. Let H
be a group, and let

¢ :mU,x9) — H and ¢r:m(V,x0) — H

be homomorphisms. Letiy, i2, j1, j2 be the homomorphisms indicated in the following
diagram, each induced by inclusion.

71 (U, xo)

J1

T (UNV, xg) —— mi(X, xg) > H

S

m1(V, xo)

If ¢1 0 i| = ¢ o i2, then there is a unique homomorphism ® : m(X, x9) — H such
that ® o j) = ¢1 and o jr = ¢.

This theorem says that if ¢; and ¢, are arbitrary homomorphisms that are “com-

patible on U N V,” then they induce a homomorphism of 7 (X, xo) into H.
Proof. Uniqueness is easy. Theorem 59.1 tells us that 1 (X, xo) is generated by the
images of j; and j,. The value of ® on the generator j; (g) must equal ¢;(g1), and its
value on j>(g2) must equal ¢2(g2). Hence & is completely determined by ¢ and ¢;.
To show ® exists is another matter!

For convenience, we introduce the following notation: Given a path f in X, we
shall use [ f] to denote its path-homotopy class in X. If f happens to lie in U, then
[f1u is used to denote its path-homotopy class in U. The notations [ f]y and [ flunv
are defined similarly.

Step 1. We begin by defining a set map p that assigns, to each loop f based at xq
that lies in U or in V, an element of the group H. We define

p(f)=d1([fly) if fliesinU,
p(f)=¢(flv) if fliesinV.
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Then p is well-defined, for if f lies in both U and V,

O flv) =it flunv) and  ¢([flv) = d2i2([flunv),

and these two elements of H are equal by hypothesis. The set map p satisfies the
following conditions:

(D) [ flu =[glu,orif [flv = [glv, then p(f) = p(g).
(2) Ifboth f and g lie in U, or if both lie in V, then p(f * g) = p(f) - p(g).

The first holds by definition, and the second holds because ¢; and ¢, are homomor-
phisms.

Step 2. We now extend p to a set map o that assigns, to each path f lying in
U or V, an element of H, such that the map o satisfies condition (1) of Step 1, and
satisfies (2) when f x g is defined.

To begin, we choose, for each x in X, a path o, from xg to x, as follows: If x = xy,
let a, be the constant path at xo. f x e UN V, leta, beapathin U N V. And if x is
inU or Vbutnotin UNV,let o, be apathin U or V, respectively.

Then, for any path f in U orin V, we define a loop L(f)in U or V, respectively,
based at xq, by the equation

L(f) = ax x (f xay),

where x is the initial point of f and y is the final point of f. See Figure 70.1. Finally,
we define

o(f) = p(L(f))

Figure 70.1
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First, we show that o is an extension of p. If f is a loop based at x¢ lying in either
U orV, then

L(f) = exo * (f * ex0)

because ay, is the constant path at xo. Then L( f) is path homotopic to f in either U
or V, so that p(L(f)) = p(f) by condition (1) for p. Hence a (f) = p(f).

To check condition (1), let f and g be paths that are path homotopic in U or
in V. Then the loops L(f) and L(g) are also path homotopic either in U or in V, so
condition (1) for p applies. To check (2), let f and g be arbitrary paths in U or in V
such that f(1) = g(0). We have

L(f)* L(g) = (ax * (f xay)) * (ay * (g *ay))

for appropriate points x, y, and z; this loop is path homotopic in U or V to L(f * g).
Then

P(L(f *8)) = p(L(f) * L(g)) = p(L(f)) - p(L(g))

by conditions (1) and (2) for p. Hence o (f x g) = o (f) - o (g).

Step 3. Finally, we extend o to a set map t that assigns, to an arbitrary path f
of X, an element of H. It will satisfy the following conditions:

(1) If[f] = [g], then T (f) = ©(g).
2) t(fxg)=1(f) t(g)if f * g is defined.
Given f, choose a subdivision s9 < --- < s, of [0, 1] such that f maps each of

the subintervals [s;_1, 5;] into U or V. Let f; denote the positive linear map of [0, 1]
onto [s;—1, s;], followed by f. Then f; is a pathin U orin V, and

[f1=1fil*---*[fal

If 7 is to be an extension of o and satisfy (1) and (2), we must have

(%) t(f)=0(f1)-a(f2) - -a(fn).

So we shall use this equation as our definition of 7.

We show that this definition is independent of the choice of subdivision. It suffices
to show that the value of 7( f) remains unchanged if we adjoin a single additional point
p to the subdivision. Let i be the index such thats;_; < p < s;. If we compute 7(f)
using this new subdivision, the only change in formula (x) is that the factor o (f;)
disappears and is replaced by the product o (f/) - o(f/"), where f] and f;” equal the
positive linear maps of [0, 1] to [si—1, p] and to [p, s;], respectively, followed by f.
But f; is path homotopic to f/ * f” in U or V, so that o (f;) = o (f/) - a(f/"), by
conditions (1) and (2) for o. Thus 7 is well-defined.

It follows that 7 is an extension of o. For if f already lies in U or V, we can use
the trivial partition of [0, 1] to define t(f); then t(f) = o (f) by definition.
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Step 4. We prove condition (1) for the set map 7. This part of the proof requires
some care.

We first verify this condition in a special case. Let f and g be paths in X from x
to y, say, and let F' be a path homotopy between them. Let us assume the additional

hypothesis that there exists a subdivision sg, ..., s, of [0, 1] such that F carries each
rectangle R; = [s;—1, s;] x I into either U or V. We show in this case that 7(f) =
7(8).

Given i, consider the positive linear map of [0, 1] onto [s;_1, s;] followed by f
or by g; and call these two paths f; and g;, respectively. The restriction of F to
the rectangle R; gives us a homotopy between f; and g; that takes place in either U
or V, but it is not a path homotopy because the end points of the paths may move
during the homotopy. Let us consider the paths traced out by these end points during
the homotopy. We define B; to be the path B;(t) = F(s;,t). Then B; is a path in X
from f(s;) to g(s;). The paths Bo and B, are the constant paths at x and y, respectively.
See Figure 70.2. We show that for each i,

fi % Bi ~=p Bi—1 * gi,
with the path homotopy taking place in U orin V.

1=

Figure 70.2

In the rectangle R;, take the broken-line path that runs along the bottom and right
edges of R;, from s;_1 x Otos; x Otos; x 1; if we follow this path by the map F, we
obtain the path f; x B;. Similarly, if we take the broken-line path along the left and top
edges of R; and follow it by F, we obtain the path S;_; x g;. Because R; is convex,
there is a path homotopy in R; between these two broken-line paths; if we follow by F,
we obtain a path homotopy between f; * 8; and ;1 * g; that takes place in either U
or V, as desired.

It follows from conditions (1) and (2) for o that

o(fi) -a(Bi)=0(Bi-1) - o(gi),
so that
(%) a(f) =0(Bi—1)-o(g) -aB)".
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It follows similarly that since By and B, are constant paths, o (8p) = o (8,) = 1. (For

the fact that Bg * Bo = Bp implies that o (Bg) - o (Bo) = o (Bo).)
We now compute as follows:

() =0(f1) - o(f2)---o(fa).

Substituting (*x) in this equation and simplifying, we have the equation

(f) =0(81) - 0(g2)---o(gn)
= 1(g).
Thus, we have proved condition (1) in our special case.

Now we prove condition (1) in the general case. Given f and g and a path homo-
topy F between them, let us choose subdivisions sg, ..., s, and #g, ..., t, of [0, 1]
such that F maps each subrectangle [s; -1, s;] x [tj—1, ¢;] into either U or V. Let f;
be the path f;(s) = F(s,t;); then fo = f and f,, = g. The pair of paths f;_; and f;
satisfy the requirements of our special case, so that 7(f;_;) = 7(f;) for each j. It
follows that () = 1(g), as desired.

Step 5. Now we prove condition (2) for the set map 7. Given a path f x g in X,
let us choose a subdivision s9 < --- < s, of [0, 1] containing the point 1/2 as a
subdivision point, such that f x g carries each subinterval into either U or V. Let k be
the index such that s; = 1/2.

Fori =1, ..., k, the positive linear map of [0, 1] to [s;—_1, s;], followed by f * g,
is the same as the positive linear map of [0, 1] to [2s;_1, 2s;] followed by f’; call this
map f;. Similarly, fori = k + 1, ..., n, the positive linear map of [0, 1] to [s;—1, s;],
followed by f * g, is the same as the positive linear map of [0, 1] to [2s; 1 — 1, 2s; — 1]
followed by g; call this map g; —x. Using the subdivision sg, ..., s, for the domain of
the path f * g, we have

t(fxg)=0(f1)---a(fi) -o(g1) 0(gn-k).
Using the subdivision 2sg, . . ., 2s; for the path f, we have

(f)=0(f1) --o(fi).

And using the subdivision 2s; — 1, ..., 2s, — 1 for the path g, we have
T(g) =0(g1) - 0(gn—k)-
Thus (2) holds trivially.
Step 6. The theorem follows. For each loop f in X based at xg, we define

Q([fD) =t(f).

Conditions (1) and (2) show that & is a well-defined homomorphism.
Let us show that ® o j; = ¢;. If f is a loop in U, then

C (1 flv)) = UASfD
=t(f)
=p(f)=nlflv),
as desired. The proof that ® o j, = ¢, is similar. |
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The preceding theorem is the modern formulation of the Seifert-van Kampen the-
orem. We now turn to the classical version, which involves the free product of two
groups. Recall that if G is the external free product G = G| * G, we often treat G
and G as if they were subgroups of G, for simplicity of notation.

Theorem 70.2 (Seifert-van Kampen theorem, classical version). Assume the hy-
potheses of the preceding theorem. Let

JimU, xp) *m(V, x0) — m1(X, xp)

be the homomorphism of the free product that extends the homomorphisms j; and j,
induced by inclusion. Then j is surjective, and its kernel is the least normal subgroup
N of the free product that contains all elements represented by words of the form

(1(8) ", i2(g)),
forg € mi(U NV, xp).

Said differently, the kernel of j is generated by all elements of the free product of
the form i1 (g)~'i2(g), and their conjugates.

Proof. The fact that ; (X, xg) is generated by the images of j; and j, implies that j
is surjective.

We show that N C kerj. Since ker j is normal, it is enough to show that
i1(g)"'i(g) belongs to ker j foreach g € m(UNV,x0). Ifi : UNV — X is
the inclusion mapping, then

Ji1(g) = jui1(g) = ix(g) = j2i2(g) = Jji2(g).
Then i(g) i (g) belones to the kernel of j.
It follows that j induces an epimorphism

k:m U, xp) *xm(V,x0)/N — m(X, xp).

We show that N equals ker j by showing that k is injective. It suffices to show that k
has a left inverse.

Let H denote the group 7 (U, xo) * m;(V,x9)/N. Let ¢y : m(U,x0) - H
equal the inclusion of 71 (U, xp) into the free product followed by projection of the
free product onto its quotient by N. Let ¢ : m1(V, x9) — H be defined similarly.
Consider the diagram

a1 (U, xp)

NN

mU NV, xp) —— (X, x0) <= H

m1(V, xo0)
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It is easy to see that ¢ o i1 = ¢p2 0 iz. Forif g € m{(U NV, xp), then ¢1(i1(g)) is
the coset i1(g)N in H, and ¢, (i2(g)) is the coset i;(g) N. Because i1(g)_1i2(g) €N,
these cosets are equal.

It follows from Theorem 70.1 that there is a homomorphism & : 71 (X, xo) > H
such that ® o j; = ¢ and ® o j, = ¢2. We show that ® is a left inverse for k. It
suffices to show that ® o k acts as the identity on any generator of H, that is, on any
coset of the form gN, where g is in 71 (U, xo) or m1(V, xp). Butif g € 71 (U, x¢), we
have

k(gN) = j(g) = ji1(g),
so that
Q(k(gN)) = ®(j1(8)) = ¢1(8) = gN,

as desired. A similar remark applies if g € 71(V, xp). [ |

Corollary 70.3. Assume the hypotheses of the Seifert-van Kampen theorem. If UNV
is simply connected, then there is an isomorphism

k:m(U, xo) * T (V, x0) — m1(X, x0).

Corollary 70.4. Assume the hypotheses of the Seifert-van Kampen theorem. If V is
simply connected, there is an isomorphism

k . n’l(U, x())/N —> ﬂl(X, xO)s

where N is the least normal subgroup of m1(U, xo) containing the image of the homo-
morphism

i :mUNYV,xy) > mU, xp).

EXAMPLE 1.  Let X be a theta-space. Then X is a Hausdorff space that is the union of
three arcs A, B, and C, each pair of which intersect precisely in their end points p and q.
We showed earlier that the fundamental group of X is not abelian. We show here that this
group is in fact a free group on two generators.

Let a be an interior point of A and let b be an interior point of B. Write X as the union
of the opensets U = X —a and V = X —b. See Figure 70.3. The space UNV = X —a—b
is simply connected because it is contractible. Furthermore, U and V have infinite cyclic
fundamental groups, because U has the homotopy type of B U C and V has the homotopy
type of A U C. Therefore, the fundamental group of X is the free product of two infinite
cyclic groups, that is, it is a free group on two generators.



§70 The Seifert-van Kampen Theorem 433
a
A
P q
c
B
b
Figure 70.3
Exercises
In the following exercises, assume the hypotheses of the Seifert-van Kampen theo-
rem.
1. Suppose that the homomorphism i, induced by inclusioni : UNV — X is
trivial.
(a) Show that j; and j; induce an epimorphism

(b)

h: (m(U, x0)/N1) * (m1(V, x0)/N2) — m1(X, x0),

where N is the least normal subgroup of 71 (U, x¢) containing image i1, and
N3 is the least normal subgroup of 71 (V, x¢) containing image i,.

Show that & is an isomorphism. [Hint: Use Theorem 70.1 to define a left
inverse for A.]

2. Suppose that i, is surjective.

(a)

(b)

3. (a
(b)

Show that j; induces an epimorphism
h:mU, x0)/M — m1(X, xo),

where M is the least normal subgroup of m; (U, x¢) containing i(keri>).
[Hint: Show j is surjective.]

Show that A is an isomorphism. [Hint: Let H = m (U, xo)/M. Let ¢; :
m1(U, xg) — H be the projection. Use the fact that 71 (U NV, xg)/ ker i, is
isomorphic to 7 (V, x¢) to define a homomorphism ¢, : m1(V,xp) > H.
Use Theorem 70.1 to define a left inverse for A.]

Show that if G| and G have finite presentations, so does G| * G».

Show that if 11 (U NV, xg) is finitely generated and 71 (U, xg) and 1 (V, x0)
have finite presentations, then ) (X, xo) has a finite presentation. [Hint: If
N’ is a normal subgroup of 11 (U, xo) * m1(V, xo) that contains the elements
i1(gi)"Yiz(gi) where g; runs over a set of generators for 1 (U NV, xg), then
N’ contains i1(g)~'i2(g) for arbitrary g.]
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§71 The Fundamental Group of a Wedge of Circles

In this section, we define what we mean by a wedge of circles, and we compute its
fundamental group.

Definition. Let X be a Hausdorff space that is the union of the subspaces Sy, ..., S,,
each of which is homeomorphic to the unit circle S!. Assume that there is a point p
of X such that §; N §; = {p} whenever i # j. Then X is called the wedge of the
circles Sy, ..., S,.

Note that each space S;, being compact, is closed in X. Note also that X can be
imbedded in the plane; if C; denotes the circle of radius i in R? with center at (i, 0),
then X is homeomorphicto Cy U --- U C,,.

Theorem 71.1. Let X be the wedge of the circles Sy, ..., Sp; let p be the common
point of these circles. Then m(X, p) is a free group. If f; is a loop in S; that rep-
resents a generator of m(S;, p), then the loops f, ..., f, represent a system of free
generators for (X, p).

Proof. The result is immediate if n = 1. We proceed by induction on n. The proof is
similar to the one given in Example 1 of the preceding section.

Let X be the wedge of the circles S, ..., Sp, with p the common point of these
circles. Choose a point g; of S; different from p, for each i. Set W; = §; — ¢g;, and let

U=§iuWuU.---UW, and V=WUSuUu-.-US§s,.

ThenUNV = W U...-UW,. See Figure 71.1. Each of the spaces U, V,and UNV is
path connected, being the union of path-connected spaces having a point in common.

S, W, % w,
W, w, S,
9,
q
w, w, w, q; w, S, S,
u unmnv 1’4
Figure 71.1

The space W; is homeomorphic to an open interval, so it has the point p as a
deformation retract; let F; : W; x I — W; be the deformation retraction. The maps F;
fit together todefine amap F : (UNV) x I — U NV that is a deformation retraction
of U NV onto p. (To show that F is continuous, we note that because S; is a closed
subspace of X, the space W; = S§; — g; is a closed subspace of U NV, so that W; x [
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is a closed subspace of (U N V) x I. Then the pasting lemma applies.) It follows that
U NYV is simply connected, so that ) (X, p) is the free product of the groups | (U, p)
and ;(V, p), relative to the monomorphisms induced by inclusion.

A similar argument shows that S is a deformation retract of U and S, U---U S, is
a deformation retract of V. It follows that 7y (U, p) is infinite cyclic, and the loop f;
represents a generator. It also follows, using the induction hypothesis, that 7;(V, p) is
a free group, with the loops f>, ..., f, representing a system of free generators. Our
theorem now follows from Theorem 69.2. [ |

We generalize this result to a space X that is the union of infinitely many circles
having a point in common. Here we must be careful about the topology of X.

Definition. Let X be a space that is the union of the subspaces X,, for @ € J. The
topology of X is said to be coherent with the subspaces X, provided a subset C of X
is closed in X if C N X, is closed in X, for each a. An equivalent condition is that a
set be open in X if its intersection with each X, is open in X,.

If X is the union of finitely many closed subspaces X1, ..., X,, then the topology
of X is automatically coherent with these subspaces, since if C N X is closed in X, it
is closed in X, and C is the finite union of the sets C N X;.

Definition. Let X be a space that is the union of the subspaces S, for @ € J, each
of which is homeomorphic to the unit circle. Assume there is a point p of X such that
Sa N Sg = {p} whenever a # B. If the topology of X is coherent with the subspaces
S«, then X is called the wedge of the circles S,.

In the finite case, the definition involved the Hausdorff condition instead of the
coherence condition; in that case the coherence condition followed. In the infinite
case, this would no longer be true, so we included the coherence condition as part of
the definition. We would include the Hausdorff condition as well, but that is no longer
necessary, for it follows from the coherence condition:

Lemma 71.2. Let X be the wedge of the circles Sq, fora € J. Then X is normal.
Furthermore, any compact subspace of X is contained in the union of finitely many
circles Sy.

Proof. It is clear that one-point sets are closed in X. Let A and B be disjoint closed
subsets of X; assume that B does not contain p. Choose disjoint subsets U, and V,
of S, that are open in S, and contain {p} U (A N Sy) and B N §,, respectively. Let
U=Uqyand V = | V,; then U and V are disjoint. Now U N S, = U, because
all the sets U, contaip p, and V N §y = V, because no set V, contains p. Hence U
and V are open in X, as desired. Thus X is normal.

Now let C be a compact subspace of X. For each a for which it is possible, choose
a point x4 of C N (Sq — p). The set D = {x,} is closed in X, because its intersection
with each space S, is a one-point set or is empty. For the same reason, each subset
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of D is closed in X. Thus D is a closed discrete subspace of X contained in C; since
C is limit point compact, D must be finite. ]

Theorem 71.3. Let X be the wedge of the circles Sy, fora € J; let p be the common
point of these circles. Then (X, p) is a free group. If f, is a loop in S, representing
a generator of m1(Sy, p), then the loops { fo} represent a system of free generators for
(X, p).

Proof. Letiy : m1(Sq, p) — m1(X, p) be the homomorphism induced by inclusion;
let G4 be the image of i, .

Note that if f is any loop in X based at p, then the image set of f is compact,
so that f lies in some finite union of subspaces S,. Furthermore, if f and g are two
loops that are path homotopic in X, then they are actually path homotopic in some
finite union of the subspaces S,.

It follows that the groups {G,} generate m; (X, p). For if f is a loop in X, then
f liesin Sy, U--- U S,, for some finite set of indices; then Theorem 71.1 implies
that [ f] is a product of elements of the groups G, ..., Gq,. Similarly, it follows
that ig is a monomorphism. For if f is a loop in Sg that is path homotopic in X to a
constant, then f is path homotopic to a constant in some finite union of spaces Sy, s0
that Theorem 71.1 implies that f is path homotopic to a constant in Sg.

Finally, suppose there is a reduced nonempty word

W= (8ay-- - - 8ay)

in the elements of the groups G, that represents the identity element of 1 (X, p). Let
f be a loop in X whose path-homotopy class is represented by w. Then f is path
homotopic to a constant in X, so it is path homotopic to a constant in some finite union
of subspaces S,. This contradicts Theorem 71.1. [ |

The preceding theorem depended on the fact that the topology of X was coherent
with the subspaces S,. Consider the following example:

EXAMPLE 1. Let C, be the circle of radius 1/n in R? with center at the point (1/n, 0).
Let X be the subspace of R? that is the union of these circles; then X is the union of a count-
ably infinite collection of circles, each pair of which intersect in the origin p. However, X
is not the wedge of the circles C,; we call X (for convenience) the infinite earring.

One can verify directly that X does not have the topology coherent with the sub-
spaces C,; the intersection of the positive x-axis with \" contains exactly one point from
each circle C,,, but it is not closed in X. Alternatively, for each n, let f, be aloop in C, that
represents a generator of 7 (C,, p); we show that 1 (X, p) is not a free group with {[ f,,1}
as a system of free generators. Indeed, we show the elements [ f;] do not even generate the
group 71 (X, p).

Consider the loop g in X defined as follows: For each n, define g on the interval
[1/(n + 1), 1/n] to be the positive linear map of this interval onto [0, 1] followed by f,.
This specifies g on (0, 1]; define g(0) = p. Because X has the subspace topology derived
from R?, it is easy to see that g is continuous. See Figure 71.2. We show that given n, the
element [g] does not belong to the subgroup G, of 71(X, p) generated by [ f1], ..., [ fa].



§71 The Fundamental Group of a Wedge of Circles 437

Choose N > n, and consider the map A : X — Cy defined by setting A(x) = x for
x € Cy and h(x) = p otherwise. Then 4 is continuous, and the induced homomorphism
he : m(X, p) = m(Cn, p) carries each element of G, to the identity element. On
the other hand, h o g is the loop in Cy that is constant outside [1/(N + 1), 1/N] and
on this interval equals the positive linear map of this interval onto [0, 1] followed by fy.
Therefore, h,([g]) = [ fn], which generates 71(Cyn, p)! Thus [g] € G,,.

X
g
R I I 1 p
cee 1y f,
¢
Figure 71.2

In the preceding theorem, we calculated the fundamental group of a space that is
an infinite wedge of circles. For later use, we now show that such spaces do exist! (We
shall use this result in Chapter 14.)

*Lemma 71.4. Given an index set J, there exists a space X that is a wedge of
circles S, fora € J.

Proof. Give the set J the discrete topology, and let E be the product space S! x J.
Choose a point by € S!, and let X be the quotient space obtained from E by collapsing
the closed set P = bp x J to a point p. Let m : E — X be the quotient map; let
Se = m(S! x a). We show that each S, is homeomorphic to S! and X is the wedge of
the circles S, .

Note that if C is closed in S! x «, then 7(C) is closed in X. For r "7 (C) = C
if the point by x « is not in C, and Jt"lzt(C ) = C U P otherwise. In either case,
7~ 7 (C) is closed in S! x J, so that 7 (C) is closed in X.

It follows that S, is itself closed in X, since S! x « is closed in S! x J, and that
7 maps S' x @ homeomorphically onto S,. Let 7, be this homeomorphism.

To show that X has the topology coherent with the subspaces S,, let D C X and
suppose that D N S, is closed in S, for each @. Now

r {Dyn (S xa) =71 (DN Sy);

the latter set is closed in S! x o because 7, is continuous. Then 7 ~1(D) is closed in
S! x J, so that D is closed in X by definition of the quotient topology. [
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Exercises

1.

Let X be a space that is the union of subspaces Si, ..., S,, each of which is

homeomorphic to the unit circle. Assume there is a point p of X such that

SiNS; ={p}fori # j.

(a) Show that X is Hausdorff if and only if each space §; is closed in X.

(b) Show that X is Hausdorff if and only if the topology of X is coherent with
the subspaces S;.

(c) Give an example to show that X need not be Hausdorff. [Hint: See Exer-
cises 5 of §36.]

Suppose X is a space that is the union of the closed subspaces Xy, ..., X,;
assume there is a point p of X such that X; N X; = {p} fori # j. Then we call
X the wedge of the spaces X, ..., X,, and write X = X v --- VvV X,,. Show
that if for each i, the point p is a deformation retract of an open set W; of X;,
then 71 (X, p) is the external free product of the groups 7| (X;, p) relative to the
monomorphisms induced by inclusion.

What can you say about the fundamental group of X Vv Y if X is homeomorphic
to S! and Y is homeomorphic to §2?

Show that if X is an infinite wedge of circles, then X does not satisfy the first
countability axiom.

. Let S, be the circle of radius n in R? whose center is at the point (n,0). Let Y

be the subspace of R? that is the union of these circles; let p be their common

point.

(a) Show that Y is not homeomorphic to a countably infinite wedge X of circles,
nor to the space of Example 1.

(b) Show, however, that | (Y, p) is a free group with {[ f,]} as a system of free
generators, where f, is a loop representing a generator of 71 (S,, p).

§72 Adjoining a Two-cell

We have computed the fundamental group of the torus 7 = S! x S! in two ways. One
involved considering the standard covering map p x p: R x R = S! x S! and using
the lifting correspondence. Another involved a basic theorem about the fundamental
group of a product space. Now we compute the fundamental group of the torus in yet
another way.

If one restricts the covering map p x p to the unit square, one obtains a quotient

map 7 : 1?>T. 1t maps Bd 12 onto the subspace A = (S! x bg) U (bg x Sy, which
is the wedge of two circles, and it maps the rest of 12 bijectively onto T — A. Thus, T
can be thought of as the space obtained by pasting the edges of the square /2 onto the
space A.
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The process of constructing a space by pasting the edges of a polygonal region
in the plane onto another space is quite useful. We show here how to compute the
fundamental group of such a space. The applications will be many and fruitful.

Theorem 72.1. Let X be a Hausdorff space; let A be a closed path-connected sub-
space of X. Suppose that there is a continuous map h : B? — X that maps Int B?
bijectively onto X — A and maps S' = Bd B? into A. Let p € S! and leta = h(p); let
k : (S, p) = (A, a) be the map obtained by restricting h. Then the homomorphism

i* Zﬂ](A, a) —> n](X’ a)

induced by inclusion is surjective, and its kernel is the least normal subgroup of
m1(A, a) containing the image of k, : (St p) — mi1(A,a).

We sometimes say that the fundamental group of X is obtained from the funda-
mental group of A by “killing off” the class k,[ f], where [ f] generates m1(S!, p).

Proof. Step 1. The origin 0 is the center point of B?; let xq be the point £(0) of X. If
U is the open set U = X — xq of X, we show that A is a deformation retract of U. See
Figure 72.1.

Figure 72.1

Let C = h(B?), and let  : B2 — C be the map obtained by restricting the range
of h. Consider the map

nxid:Bsz—-»CxI;

it is a closed map because B2 x I is compact and C x I is Hausdorff; therefore, it is a
quotient map. Its restriction

7 (BE=0) xI — (C—x0) x I

is also a quotient map, since its domain is open in B? x I and is saturated with respect
to 7 x id. There is a deformation retraction of B2 — 0 onto S!; it induces, via the
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quotient map ', a deformation retraction of C — x¢ onto (S Y. We extend this
deformation retraction to all of U x I by letting it keep each point of A fixed during
the deformation. Thus A is a deformation retract of U.

It follows that the inclusion of A into U induces an isomorphism of fundamental
groups. Our theorem then reduces to proving the following statement:

Let f be a loop whose class generates mi(S', p). Then the inclusion of U into X
induces an epimorphism

(U, a) — m((X,a)

whose kernel is the least normal subgroup containing the class of the loop g = h o f.

Step 2. In order to prove this result, it is convenient to consider first the homomor-
phism 71 (U, b) — m (X, b) induced by inclusion relative to a base point b that does
not belong to A.

Let b be any point of U — A. Write X as the union of the open sets U and
V=X-—-A=n(nt Bz). Now U is path connected, since it has A as a deformation
retract. Because 7 is a quotient map, its restriction to Int B2 is also a quotient map
and hence a homeomorphism; thus V is simply connected. Theset U NV =V — xg
is homeomorphic to Int B2 — 0, so it is path connected and its fundamental group is
infinite cyclic. Since b is a point of U N V, Corollary 70.4 implies that the homomor-
phism

mU, by — m1(X, b)

induced by inclusion is surjective, and its kernel is the least normal subgroup contain-
ing the image of the infinite cyclic group 7 (U NV, b).

Step 3. Now we change the base point back to a, proving the theorem.

Let g be the point of B? that is the midpoint of the line segment from 0 to p, and
let b = h(q); then b is a point of U N V. Let fy be a loop in Int B2 — 0 based at g
that represents a generator of the fundamental group of this space; then go = h o fo
is aloop in U NV based at b that represents a generator of the fundamental group of
U N V. See Figure 72.2.

Step 2 tells us that the homomorphism 7 (U, b) — m1(X, b) induced by inclusion
is surjective and its kernel is the least normal subgroup containing the class of the loop
8o = h o fp. To obtain the analogous result with base point a we proceed as follows:

Let y be the straight-line path in B2 from ¢ to p; let § be the path § = h o y in Y
from b to a. The isomorphisms induced by the path § (both of which we denote by §)
commute with the homomorphisms induced by inclusion in the following diagram:

U, by — m (X, b)
& k
m(U,a) —— m1(X, a)

Therefore, the homorhorphism of m (U, a) into m1(X, a) induced by inclu§ion is sur-
jective, and its kernel is the least normal subgroup containing the element 6([go}).
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Figure 72.2

The loop fo represents a generator of the fundamental group of Int B2 — 0 based
at g. Then the loop y * (fo * y) represents a generator of the fundamental group of
B? — 0 based at p. Therefore, it is path homotopic either to f or its reverse; suppose
the former. Following this path homotopy by the map h, we see that & * (go * 8) is path
homotopic in U to g. Then H ([go]) = Lg], and the theorem follows. [ |

There is nothing special in this theorem about the unit ball B2. The same result
holds if we replace B2 by any space B homeomorphic to B2, if we denote by Bd B the
subspace corresponding to S! under the homeomorphism. Such a space B is called a 2-
cell. The space X of this theorem is thought of as having been obtained by “adjoining
a2-cell” to A. We shall treat this situation more formally later.

Exercises

1. Let X be a Hausdorff space; let A be a closed path-connected subspace. Suppose
that £ : B — X is a continuous map that maps S"~! into A and maps Int B"
bijectively onto X — A. Let a be a point of #(S"~!). If n > 2, what can you say
about the homomorphism of 71 (A, a) into 71 (X, a) induced by inclusion?

2. Let X be the adjunction space formed from the disjoint union of the normal,
path-connected space A and the unit ball B?> by means of a continuous map
f : 8! - A. (See Exercise 8 of §35.) Show that X satisfies the hypotheses of
Theorem 72.1. Where do you use the fact that A is normal?

3. Let G be a group; let x be an element of G; let N be the least normal subgroup
of G containing x. Show that if there is a normal, path-connected space whose
fundamental group is isomorphic to G, then there is a normal, path-connected
space whose fundamental group is isomorphic to G/N.
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§73 The Fundamental Groups of the Torus and the Dunce
Cap

We now apply the results of the preceding section to compute two fundamental groups,
one of which we already know and the other of which we do not. The techniques
involved will be important later.

Theorem 73.1. The fundamental group of the torus has a presentation consisting of
two generators «, B and a single relation afa~' g1,

Proof Let X = S' x §! be the torus, and let 4 : 12 — X be obtained by restricting
the standard covering map p x p : R x R — S! x S!. Let p be the point (0, 0) of
Bd /2, leta = h(p), and let A = h(Bd 1%). Then the hypotheses of Theorem 72.1 are
satisfied.

The space A is the wedge of two circles, so the fundamental group of A is free.
Indeed, if we let ag be the path ap(t) = (¢, 0) and bg be the path bo(z) = (0,¢) in
Bd /2, then the paths @ = h 0 ag and B = h o by are loops in A such that [«] and [B]
form a system of free generators for 7 (A, a). See Figure 73.1.

a
! h
l} A —_—
by b,
4,
p >
12 X=8"x§'
Figure 73.1

Now let a; and b; be the paths a1 (¢) = (¢, 1) and b1 (¢t) = (1,¢) in Bd 1?%. Consider
the loop f in Bd I2 defined by the equation

f =ag * (b * (@ * bp)).

Then f represents a generator of 7 (Bd /2, p); and the loop g = h o f equals the
product « * (B * (@ * B)). Theorem 72.1 tells us that 7; (X, a) is the quotient of the
free group on the free generators [a] and [B] by the least normal subgroup containing
the element [«][8][a]"'[B]". [

Corollary 73.2. The fundamental group of the torus is a free abelian group of rank 2.

Proof. Let G be the free group on generators «, 8; and let N be the least normal
subgroup containing the element ofa ! B~!. Because this element is a commutator,
N is contained in the commutator subgroup [G, G] of G. On the other hand, G/N
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is abelian; for it is generated by the cosets o N and SN, and these elements of G/N
commute. Therefore N contains the commutator subgroup of G.
It follows from Theorem 69.4 that G/N is a free abelian group of rank 2. [

Definition. Let n be a positive integer with n > 1. Let r : S! — S! be rota-
tion through the angle 27 /s, mapping the point (cosé, siné) to the point (cos(6 +
27 /n), sin(@ 4 27 /n)). Form a quotient space X from the unit ball B? by identifying
each point x of ST with the points r(x), r2(x), ..., r""}(x). We shall show that X is
a compact Hausdorff space; we call it the n-fold dunce cap.

Let 7 : B2 — X be the quotient map; we show that 7 is a closed map. In order
to do this, we must show that if C is a closed set of B2, then 7 lz(C ) 1s also closed
in BZ; it then will follow from the definition of the quotient topology that 7 (C) is
closed in X. Let Co = C N S'; it is closed in B2. The set 7 ~!7(C) equals the union
of C and the sets r(Cp), r2(Cp), ..., r"~1(Cp), all of which are closed in B? because
r is a homeomorphism. Hence 7~ 17(C) is closed in B2, as desired.

Because  is continuous, X is compact. The fact that X is Hausdorff is a conse-
quence of the following lemma, which was given as an exercise in §31.

Lemma 73.3. Letm : E — X be a closed quotient map. If E is normal, then so
is X.

Proof. Assume E is normal. One-point sets are closed in X because one-point sets
are closed in E. Now let A and B be disjoint closed sets of X. Then 7~ '(A) and
n~1(B) are disjoint closed sets of E. Choose disjoint open sets U and V of E con-
taining 7~ 1(A) and 7~ (B), respectively. It is tempting to assume that 7(U) and
(V) are the open sets about A and B that we are seeking. But they are not. For they
need not be open (7 is not necessarily an open map), and they need not be disjoint!
See Figure 73.2.

00000
U XX

A B

Figure 73.2

So we proceed as follows: Let C = E — U and let D = E — V. Because C and
D are closed sets of E, the sets 7(C) and m (D) are closed in X. Because C contains
no point of 771 (A), the set 7 (C) is disjoint from A. Then Ug = X — 7 (C) is an open
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set of X containing A. Similarly, Vo = X — (D) is an open set of X containing B.
Furthermore, Uy and V; are disjoint. For if x € Uy, then 7 ~!(x) is disjoint from C, so
that it is contained in U. Similarly, if x € Vj, then 7~ 1(x) is contained in V. Since U
and V are disjoint, so are Uy and Vj. |

Let us note that the 2-fold dunce cap is a space we have seen before; it is home-
omorphic to the projective plane P2. To verify this fact, recall that P2 was defined
to be the quotient space obtained from $? by identifying x with —x for each x. Let
p : §2 — P? be the quotient map. Let us take the standard homeomorphism i of B2
with the upper hemisphere of S, given by the equation

i(x,y) = (6,5, (1= x> = yH)/?),
and follow it by the map p. We obtain a map 7 : B> — P2 that is continuous, closed,
and surjective. On Int B it is injective, and for each x € S!, it maps x and —x to the
same point. Hence it induces a homeomorphism of the 2-fold dunce cap with P2.

The fundamental group of the n-fold dunce cap is just what you might expect from
our computation for P2.

Theorem 73.4. The fundamental group of the n-fold dunce cap is a cyclic group of
order n.

Proof. Let h : B2 — X be the quotient map, where X is the n-fold dunce cap.
Set A = h(S"). Let p = (1,0) € S! and let a = h(p). Then h maps the arc C
of S! running from p to r(p) onto A; it identifies the end points of C but is otherwise
injective. Therefore, A is homeomorphic to a circle, so its fundamental group is infinite
cyclic. Indeed, if y is the path

y(t) = (cos(2rt/n), sin(2rt /n))

in S! from p to r(p), then @ = h o y represents a generator of 71(A, a). See Fig-
ure 73.3.
Now the class of the toop

f=y*xroy)*((rPoy)x--- ("' oy))

roy

réoY Y h

rioY rSoy

rioy

Figure 73.3
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generates m1(S!, p). Since h(r™(x)) = h(x) for all x and m, the loop h o f equals the
n-fold product & * (¢ * (- - - * cr)). The theorem follows. [ ]

Exercises

1. Find spaces whose fundamental groups are isomorphic to the following groups.
(Here Z/n denotes the additive group of integers modulo n.)
(a) Z/n x Z/m.
(by Z/ny x Z/ny x --- x Z/ng.
(c) Z/n x Z/m. (See Exercise 2 of §71.)
(d) Z/n1*Z/ny *---xZL[/ng.

2. Prove the following:
Theorem. If G is a finitely presented group, then there is a compact Hausdorff
space X whose fundamental group is isomorphic to G.
Proof. Suppose G has a presentation consisting of n generators and m relations.
Let A be the wedge of n circles; form an adjunction space X from the union
of A and m copies By, ..., By, of the unit ball by means of a continuous map
f . UBd B,‘ — A.
(a) Show that X is Hausdorff.
(b) Prove the theorem in the case m = 1.
(c) Proceed by induction on m, using the algebraic result stated in the following

exercise.
The construction outlined in this exercise is a standard one in algebraic topol-

ogy; the space X is called a two-dimensional CW complex.

3. Lemma. Letf :G — Handg: H — K be homomorphisms; assume f is
surjective. If xo € G, and if ker g is the least normal subgroup of H containing
f(xp), then ker(g o f) is the least normal subgroup N of G containing ker f
and XQ-

Proof. Show that f(N) is normal; conclude that ker(g o f) = f~!(kerg) C
[Ny =N.

4. Show that the space constructed in Exercise 2 is in fact metrizable. [Hint: The

quotient map is a perfect map.]



