

Assume
$$\tilde{s}$$
 is defined on $[0, \pm i..., 3]$ let
 \tilde{U}_i be the component of $P^{-1}(u_i)$ that
Contains $\tilde{f}(\pm i...)$.

· let pi be tre innue at prestricted to ûi.

	M	
41	S	
414	CN 4	

Key corollary: if 2 paths have the same endpoints and are path homotopic then their lifts have the some endpoint Cor Let p: E > B be a covering space & let $f, g: [o, i] \rightarrow B$ be paths with f(0) = g(0), f(1) = g(1), and frpg. If fig: Lan > E are lifts of 1 &g with J (0)= 3 (0) then f(1) = g'(2)PF Let F: [0,]×[0,1] → B be the homotopy between t &g. Let F: [0,] x [0,1] -> E be the lift of F with $\widetilde{F}(0,0) = \widetilde{f}(0) = \widetilde{g}(0)$. As F is a horstopy of pairs f is constant on $203 \times 20, 2$] & $12 \times [0, 1]$. Also $f_{\pm}(s) = F(s, \pm)$ is a lift of $f_{\pm}(S) = F(S, \pm)$, Since $f_{\pm}(a) = \widetilde{F}(a, \pm) = \widetilde{f}(a) = \widetilde{f}(a)$ by the unique ness of lifts for if & fires. Since F is constant on {1}x [q] we have $J_{(1)=f_{1}(1)} \rightarrow f^{(1)=f(1)}$

DEFINITION If X is path connected & $iT_1(X_1 x_n) = ies$ then X is simply connected. LEMMA Assume that X is simply Connected. Then for any paths $f_1g: [o.i] \rightarrow X$ with f(o) = g(o) & f(1) = g(1)we have $f \stackrel{\sim}{\longrightarrow} g(1)$.

PROOF f* @ represents an element of TT, (X, fco). Since X is simply Connected f*g~p cont