From the LFTsive terms	Assume of	1	Number of the number of numbers
and	logally path	connected.	4
p: (E.g.)	3 (B.b.)		
be a covering space	and		
f: (X, x_0) \rightarrow (B, b_0)			
a map . The $\frac{1}{2}$ has t left			
\n $\frac{1}{3}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X, x) \rightarrow (E, e_0)			
\n $\frac{1}{2}$: (X,			

LEMMA Let \propto_{1} B: SOID -> B be paths μ ity Let x, \tilde{g} : Le. $D \rightarrow E$ be the lifts $with \quad \tilde{d}(s) = 8cos \epsilon$ The $\tilde{d}(1) = 8cos$ if and only if $[\alpha * \overline{\partial}] \in p_{*}$ (π_{i} (E,es). ϵ tr, (β, ζ) $\sqrt{2}$ $x * 5(k) =\begin{cases} k(2k) & 0 \neq 5k \ \end{cases}$ \bigcirc Given LXE vrite 2, à $P \in \widetilde{\left(\mathcal{L} \times \overline{\mathcal{S}}\right)}$ = $\forall\# \overline{\mathcal{S}}$ \mathcal{R} $\alpha \ast \overline{\mathcal{S}}$ (6) = \mathcal{C}_{∞} $Z(G) = \sqrt{x} \sqrt{\epsilon}$ (ϵ_2)

Proof let $\alpha * \overline{\beta}$ be the unique lift of $\alpha * \overline{\beta}$ with α_{*} (o)= e_{o} . We have seen that $\alpha * \overline{\beta}$ (1)= e_{ϵ} if $\alpha * \overline{\delta}$ $\in P_{*}(\pi_{\epsilon}(E,e_{\epsilon}))$. In fact if $\alpha * \overline{\alpha}$ (1)=e the $[\alpha * \overline{\alpha}] \in \pi$, $(E, \overline{\alpha})$
 α $\alpha * \overline{\alpha}$) = [$\alpha * \overline{\alpha}$] = π , $(E, \overline{\alpha})$ $\lceil x\ast\overline{a}\rceil$ \in $\mathbb{P}_{\mathscr{A}}$ $\left(\uparrow,\left(\varepsilon_{\mathscr{A}}\right)\right)$.

 N_1 assume $\{\times \times 5\}$ CP $(\pi_{\iota}(E_1e_0))$ and let $\mathcal{L}(\epsilon)$ = $\sqrt{x} \overline{\beta} (2\epsilon)$ and $\widetilde{\beta} (\epsilon)$ = $\sqrt{x} \overline{\delta} (\epsilon - \frac{1}{2} \epsilon)$. Then I do 8 are the unique lifts of α β w ⁴ \approx (0)= α (0) = e_{0} There fore $\hat{\mathscr{E}}(1)$ = $\alpha \star \overline{\mathscr{E}}(1)$ = $\tilde{\mathscr{A}}(1)$.

Now assume
$$
\tilde{d}
$$
 d \tilde{d} are the *l*+*ls* of α d \tilde{d}
and $\tilde{d}(s) = \tilde{g}(1)$. Then $\tilde{d} \times \tilde{d}$ (4) = $\tilde{d} \times \tilde{d}$ (4)
is the unique *l*+*ol* of $\alpha \times \tilde{d}$ with
 $\alpha \times \tilde{g}(q) = e_{o}$, But $\alpha \times \tilde{d}$ (1) = $\tilde{g}(q) = e_{o}$.
By the *l*eys lemma, *H*_{is} implies $[\alpha \times \tilde{d}] \in f_{\alpha}(F_{r}(E_{q}))$

PROOF OF FLL We define $\frac{1}{4}(x)$ as before.
Let $x: [0,1] \rightarrow X$ le a path with $263 - x_0$ & $\alpha (1) = x_0$ let
 α : $[0,1] \rightarrow E$ le the unique lift

of fad^{tons B} with α (a)= e_0 & define $\tilde{\phi}(\chi)$ = $\tilde{\phi}(\mathcal{D})$. To show that this is well defined we let β : $D \cap \mathcal{D} \to X$ be another path with Blois X. & B(1)= x. π_{∞} $\left[\alpha * \hat{\delta}\right] \in \pi_{1}(X_{1} \times \epsilon)$

The
$$
f_{*}(l_{\alpha}*\delta)
$$
 = $[f_{\alpha}(\alpha*\delta)]$
\n= $(f_{\alpha\alpha})*(f_{\alpha\delta})$ $(f_{\alpha\delta})$
\n= $(f_{\alpha\alpha})*(f_{\alpha\delta})$ $(f_{\alpha\delta})$ $(f_{\alpha\delta})$ $(f_{\alpha\delta})$
\n= $(f_{\alpha\delta})*(f_{\alpha\delta})$ and $f(x)$ is well defined.
\n= $g_{\alpha\delta}$ $g_{\alpha\delta}$

Assim

\n
$$
\begin{array}{ll}\n\text{Assim} & 3 & [3] & \in \pi_1 \ (X_t x_s) & \text{s.t.} \\
\text{for } (2.53) & \text{if } P_{\star} \ (\pi_1 (E_t e_s) \), \\
& \text{if } (E_t) = 3 \ (E_t) \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
& \text{if } (E_t) = 3 \ (E_t \cdot \text{if } f(x_t) \), \\
&
$$

 \Rightarrow $\tilde{\kappa}(1)$ $\neq \tilde{\delta}(1)$

i