FINAL LIPTING LEMMA Assure X is path connected
and locally path connected. Let
$$p! (E_{i,e_{0}}) \longrightarrow (B_{i}b_{0})$$

be a covering space and
 $f: (X, X_{0}) \longrightarrow (B, b_{0})$
a rap. The f has t lift
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{0})$
if and only if $f_{x}(T_{i}(X_{x_{0}}) \subset g_{x}(T_{i}(E_{i}e_{0})).$
If the lift exists it is unique.
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{0})$
 $I f the lift exists it is unique.$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i})$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i}e_{i})$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i}e_{i})$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i})$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i})$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i})$
 $f: (X, X_{1}) \longrightarrow (E_{i}e_{i}e_{i})$

LEMMA Let α_{β} : $\Sigma_{\alpha_{1}}$ $\rightarrow B$ be parties with $\chi_{\alpha_{2}}$ $\beta_{\alpha_{2}}$ $\chi_{\alpha_{2}}$ $\chi_{\alpha_{2}}$ let 2, 3: 20, D -> E be the lifts with Dia= & (o)= co. The din= & (1) if and only if [xxi] = px (th, (E, as). € \$7, (B, 5,) Ŀ $x_{\#}\bar{g}(\xi) = \begin{cases} x(2\xi) & 0, \xi \leq y \\ 0, \xi \leq 2\xi \end{cases} \xrightarrow{\ell} \xi = \begin{cases} x(2\xi) & 0, \xi \leq y \\ 0, \xi \leq 2\xi \end{cases}$ lairer 2×B vrite 2, B. P · (Zx3) · V + B & a * B (0) : Co ~ (E) = ~ ~ (E)

PROOF let $\chi_{*\overline{B}}$ be the unique lift of $\alpha_{*\overline{B}}$ with $\chi_{*\overline{B}}(0) = R_0$. We have seen that $\chi_{*\overline{B}}(1) = R_0$ if $[\alpha_{*\overline{B}}] \in P_*(\pi_1(E,e))$. In fact if $\chi_{*\overline{B}}(1) = R_0$ then $[\alpha_{*\overline{B}}] \in \pi_1(E,e)$ & $[\alpha_{*\overline{B}}] = [P \circ \widehat{\alpha_{*\overline{B}}}]^2 P_*([\alpha_{*\overline{B}}])$ so $[\alpha_{*\overline{B}}] \in P_*(\pi_1(E,e))$. Now assume $[\angle x \overline{s}] \subseteq P_{*}(T, (E, e_{0}))$ and lef $\mathcal{L}(t) = \widehat{\mathcal{L}} \times \overline{\mathcal{B}}(2t)$ and $\widetilde{\mathcal{B}}(t) = \widehat{\mathcal{L}} \times \overline{\mathcal{B}}(1-\frac{1}{2}t)$. Then $\widetilde{\mathcal{I}} \notin \mathcal{B}$ are the unique lifts of $\mathcal{A} \notin \mathcal{B}$ with $\widehat{\mathcal{L}}(0) = \widehat{\mathcal{B}}(0) = e_{0}$. Therefore $\widehat{\mathcal{B}}(1) = \widehat{\mathcal{A}} \times \overline{\mathcal{B}}(\frac{1}{2}t) = \widehat{\mathcal{A}}(1)$.

Now assure
$$\vec{J} \leq \vec{\delta}$$
 are the lifts of $\mathcal{A} \leq \mathcal{B}$
and $\vec{J}(\Omega) = \mathcal{B}(\Omega)$. Then $\vec{\mathcal{A}} \star \vec{\delta} = \vec{\mathcal{A}} \star \vec{\mathcal{B}} = \vec{\mathcal{A}} \star \vec{\mathcal{B}} = \vec{\mathcal{A}} \times \vec{\mathcal{A}} = \vec$

PROF OF FLL We define f(x) as before. Let $2: [o,i] \rightarrow X$ be a path with $2(o) = x_0$ d $\alpha(1) = X$. Let $Z: [o,i] \rightarrow E$ be the unique lift of for $for x_0^{int}$ with $Z(o) = e_0$ & define f(X) = Z(D). To show that this is well defined we let $G: Do,i] \rightarrow X$ be another path with $B(o) = X_0$ & B(2) = X. Then $[\alpha \neq \hat{o}] \in \Pi_1(X, x_0)$

Assue
$$\exists [\exists r \in \pi, (X, x_0) = s, f = f_*(\Sigma_{\exists})] \notin P_*(\pi, (E_r, e_r)),$$

 $\forall (E_r) = g(E/2)$
 $B(E) = g(E \cdot f_2 + (1 - E) 1)$

 $=) \quad \widetilde{\times}(1) \neq \widetilde{\mathcal{S}}(1)$

1