Midtern

• true / fulse example / currenter example / questions
• If fry & gath they fach.
• If
$$LFJ_1 LgJ_2 LJ_3 \in TT_1 (X_1 X_0)$$
 with
• Give an example of a Couring space
 $p: (E, e_0) \rightarrow (b_1 b_0) & & a map$
 $f! (X_1 X_0) \rightarrow (B_1 b_0) & & f does not the
have a lift.
Using the same spaces find a map
 $g: (X_1 X_1) \rightarrow (B_1 b_0)$
that does have a lift.$

2 short proots - I'll give you 5 to choose from.

Let
$$B^2 = \frac{1}{2}(x,y) \in \mathbb{R}^2 / x^2 + y^2 \leq 1^3$$
 and $x_0 \in B^2$ a belepoint.
Then $\pi, (B^2, x_0) > \frac{1}{2}1^3$. Proop: Strugtt line honotopy.
If $L_F > C \pi, (B^2, x_0)$ define
 $f_L(S)$: $(1-t) f(S) + t - x_0$
 $= 1 f \sim p$ constant map to λ .

_

COROLLARY There is no vetraction
$$r: 8^2 \rightarrow 5'$$
.
PROOF Follows from previous corollary since $Ti_1(8^2) = 5.17$.

BROUMEL FIXED POINT THEOREM IN DIMENSION 2
Eveny App
$$f:B^2 \rightarrow b^4$$
 has a fixed point.
($\exists x \in b^4$ s.t. $f(x) = \chi$.)
PROOF We'll show that if f doesn't have a
fixed point then there is a retraction r
fixed point then there is a retraction r
from B^2 to $5^{\frac{1}{2}}$.
The construction :
 $f(x)$
 $f(x) + s_{\chi} \cdot \chi = 0$
 $\& define$
 $r(\chi) = (1-s_{\chi})f(x) + s_{\chi} \cdot \chi = 0$
 $\& define$
 $r(\chi) = (1-s_{\chi})f(x) + s_{\chi} \cdot \chi = 0$
 $\& define$
 $r(\chi) = (1-s_{\chi})f(x) + s_{\chi} \cdot \chi = 0$
 $\& define$
 $r(\chi) = (1-s_{\chi})f(x) + s_{\chi} \cdot \chi = 0$
 $\& define$
 $r(\chi) = (1-s_{\chi})f(x) + s_{\chi} \cdot \chi = 0$
 $\& define$
 $r(\chi) = (1-s_{\chi})f(x) + s_{\chi} \cdot \chi = 0$